Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Identification of CAD candidate genes in GWAS loci and their expression in vascular cells.

Erbilgin A, Civelek M, Romanoski CE, Pan C, Hagopian R, Berliner JA, Lusis AJ.

J Lipid Res. 2013 Jul;54(7):1894-905. doi: 10.1194/jlr.M037085.

2.

Knockout of Adamts7, a novel coronary artery disease locus in humans, reduces atherosclerosis in mice.

Bauer RC, Tohyama J, Cui J, Cheng L, Yang J, Zhang X, Ou K, Paschos GK, Zheng XL, Parmacek MS, Rader DJ, Reilly MP.

Circulation. 2015 Mar 31;131(13):1202-13. doi: 10.1161/CIRCULATIONAHA.114.012669.

3.

Role of Hic-5 in the formation of microvilli-like structures and the monocyte-endothelial interaction that accelerates atherosclerosis.

Arita-Okubo S, Kim-Kaneyama JR, Lei XF, Fu WG, Ohnishi K, Takeya M, Miyauchi A, Honda H, Itabe H, Miyazaki T, Miyazaki A.

Cardiovasc Res. 2015 Mar 1;105(3):361-71. doi: 10.1093/cvr/cvv003. Erratum in: Cardiovasc Res. 2016 Oct;112(1):525.

4.

Genetic-genomic replication to identify candidate mouse atherosclerosis modifier genes.

Hsu J, Smith JD.

J Am Heart Assoc. 2013 Jan 23;2(1):e005421. doi: 10.1161/JAHA.112.005421.

5.

Candidate pathway-based genome-wide association studies identify novel associations of genomic variants in the complement system associated with coronary artery disease.

Xu C, Yang Q, Xiong H, Wang L, Cai J, Wang F, Li S, Chen J, Wang C, Wang D, Xiong X, Wang P, Zhao Y, Wang X, Huang Y, Chen S, Yin D, Li X, Liu Y, Liu J, Wang J, Li H, Ke T, Ren X, Wu Y, Wu G, Wan J, Zhang R, Wu T, Wang J, Xia Y, Yang Y, Cheng X, Liao Y, Chen Q, Zhou Y, He Q, Tu X, Wang QK.

Circ Cardiovasc Genet. 2014 Dec;7(6):887-94. doi: 10.1161/CIRCGENETICS.114.000738.

6.

Notch activation induces endothelial cell senescence and pro-inflammatory response: implication of Notch signaling in atherosclerosis.

Liu ZJ, Tan Y, Beecham GW, Seo DM, Tian R, Li Y, Vazquez-Padron RI, Pericak-Vance M, Vance JM, Goldschmidt-Clermont PJ, Livingstone AS, Velazquez OC.

Atherosclerosis. 2012 Dec;225(2):296-303. doi: 10.1016/j.atherosclerosis.2012.04.010.

7.

Characterization of TCF21 Downstream Target Regions Identifies a Transcriptional Network Linking Multiple Independent Coronary Artery Disease Loci.

Sazonova O, Zhao Y, Nürnberg S, Miller C, Pjanic M, Castano VG, Kim JB, Salfati EL, Kundaje AB, Bejerano G, Assimes T, Yang X, Quertermous T.

PLoS Genet. 2015 May 28;11(5):e1005202. doi: 10.1371/journal.pgen.1005202.

8.

Lipid-induced epigenomic changes in human macrophages identify a coronary artery disease-associated variant that regulates PPAP2B Expression through Altered C/EBP-beta binding.

Reschen ME, Gaulton KJ, Lin D, Soilleux EJ, Morris AJ, Smyth SS, O'Callaghan CA.

PLoS Genet. 2015 Apr 2;11(4):e1005061. doi: 10.1371/journal.pgen.1005061.

9.

Mechanosensitive PPAP2B Regulates Endothelial Responses to Atherorelevant Hemodynamic Forces.

Wu C, Huang RT, Kuo CH, Kumar S, Kim CW, Lin YC, Chen YJ, Birukova A, Birukov KG, Dulin NO, Civelek M, Lusis AJ, Loyer X, Tedgui A, Dai G, Jo H, Fang Y.

Circ Res. 2015 Jul 31;117(4):e41-53. doi: 10.1161/CIRCRESAHA.117.306457.

10.

Altered expression of Raet1e, a major histocompatibility complex class 1-like molecule, underlies the atherosclerosis modifier locus Ath11 10b.

Rodríguez JM, Wolfrum S, Robblee M, Chen KY, Gilbert ZN, Choi JH, Teupser D, Breslow JL.

Circ Res. 2013 Oct 12;113(9):1054-64. doi: 10.1161/CIRCRESAHA.113.302052.

11.

Characterization of Ath29, a major mouse atherosclerosis susceptibility locus, and identification of Rcn2 as a novel regulator of cytokine expression.

Manichaikul A, Wang Q, Shi YL, Zhang Z, Leitinger N, Shi W.

Am J Physiol Heart Circ Physiol. 2011 Sep;301(3):H1056-61. doi: 10.1152/ajpheart.00366.2011.

12.

The 9p21 susceptibility locus for coronary artery disease and the severity of coronary atherosclerosis.

Chen SN, Ballantyne CM, Gotto AM Jr, Marian AJ.

BMC Cardiovasc Disord. 2009 Jan 27;9:3. doi: 10.1186/1471-2261-9-3.

13.

Mapping the genetic architecture of gene expression in human liver.

Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R.

PLoS Biol. 2008 May 6;6(5):e107. doi: 10.1371/journal.pbio.0060107.

14.

IRF2BP2 Reduces Macrophage Inflammation and Susceptibility to Atherosclerosis.

Chen HH, Keyhanian K, Zhou X, Vilmundarson RO, Almontashiri NA, Cruz SA, Pandey NR, Lerma Yap N, Ho T, Stewart CA, Huang H, Hari A, Geoffrion M, McPherson R, Rayner KJ, Stewart AF.

Circ Res. 2015 Sep 25;117(8):671-83. doi: 10.1161/CIRCRESAHA.114.305777.

15.

Expression quantitative trait Loci acting across multiple tissues are enriched in inherited risk for coronary artery disease.

Foroughi Asl H, Talukdar HA, Kindt AS, Jain RK, Ermel R, Ruusalepp A, Nguyen KD, Dobrin R, Reilly DF, Schunkert H, Samani NJ, Braenne I, Erdmann J, Melander O, Qi J, Ivert T, Skogsberg J, Schadt EE, Michoel T, Björkegren JL; CARDIoGRAM Consortium..

Circ Cardiovasc Genet. 2015 Apr;8(2):305-15. doi: 10.1161/CIRCGENETICS.114.000640.

16.

Fine mapping of a linkage peak with integration of lipid traits identifies novel coronary artery disease genes on chromosome 5.

Nolan DK, Sutton B, Haynes C, Johnson J, Sebek J, Dowdy E, Crosslin D, Crossman D, Sketch MH Jr, Granger CB, Seo D, Goldschmidt-Clermont P, Kraus WE, Gregory SG, Hauser ER, Shah SH.

BMC Genet. 2012 Feb 27;13:12. doi: 10.1186/1471-2156-13-12.

17.

Mapping of gene expression reveals CYP27A1 as a susceptibility gene for sporadic ALS.

Diekstra FP, Saris CG, van Rheenen W, Franke L, Jansen RC, van Es MA, van Vught PW, Blauw HM, Groen EJ, Horvath S, Estrada K, Rivadeneira F, Hofman A, Uitterlinden AG, Robberecht W, Andersen PM, Melki J, Meininger V, Hardiman O, Landers JE, Brown RH Jr, Shatunov A, Shaw CE, Leigh PN, Al-Chalabi A, Ophoff RA, van den Berg LH, Veldink JH.

PLoS One. 2012;7(4):e35333. doi: 10.1371/journal.pone.0035333.

18.

Integrative genomics reveals novel molecular pathways and gene networks for coronary artery disease.

Mäkinen VP, Civelek M, Meng Q, Zhang B, Zhu J, Levian C, Huan T, Segrè AV, Ghosh S, Vivar J, Nikpay M, Stewart AF, Nelson CP, Willenborg C, Erdmann J, Blakenberg S, O'Donnell CJ, März W, Laaksonen R, Epstein SE, Kathiresan S, Shah SH, Hazen SL, Reilly MP; Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Consortium., Lusis AJ, Samani NJ, Schunkert H, Quertermous T, McPherson R, Yang X, Assimes TL.

PLoS Genet. 2014 Jul 17;10(7):e1004502. doi: 10.1371/journal.pgen.1004502.

19.

Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains.

Bennett BJ, Davis RC, Civelek M, Orozco L, Wu J, Qi H, Pan C, Packard RR, Eskin E, Yan M, Kirchgessner T, Wang Z, Li X, Gregory JC, Hazen SL, Gargalovic PS, Lusis AJ.

PLoS Genet. 2015 Dec 22;11(12):e1005711. doi: 10.1371/journal.pgen.1005711. Erratum in: PLoS Genet. 2016 Mar;12(3):e1005913.

20.

Alzheimer's Disease Risk Polymorphisms Regulate Gene Expression in the ZCWPW1 and the CELF1 Loci.

Karch CM, Ezerskiy LA, Bertelsen S; Alzheimer’s Disease Genetics Consortium (ADGC)., Goate AM.

PLoS One. 2016 Feb 26;11(2):e0148717. doi: 10.1371/journal.pone.0148717.

Items per page

Supplemental Content

Support Center