Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

Polymeric microfluidic devices exhibiting sufficient capture of cancer cell line for isolation of circulating tumor cells.

Ohnaga T, Shimada Y, Moriyama M, Kishi H, Obata T, Takata K, Okumura T, Nagata T, Muraguchi A, Tsukada K.

Biomed Microdevices. 2013 Aug;15(4):611-616. doi: 10.1007/s10544-013-9775-7.

PMID:
23666489
2.

EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'.

Chikaishi Y, Yoneda K, Ohnaga T, Tanaka F.

Oncol Rep. 2017 Jan;37(1):77-82. doi: 10.3892/or.2016.5235. Epub 2016 Nov 8.

PMID:
27840987
3.

Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip.

Sheng W, Ogunwobi OO, Chen T, Zhang J, George TJ, Liu C, Fan ZH.

Lab Chip. 2014 Jan 7;14(1):89-98. doi: 10.1039/c3lc51017d. Epub 2013 Nov 13.

4.

Isolation of breast cancer and gastric cancer circulating tumor cells by use of an anti HER2-based microfluidic device.

Galletti G, Sung MS, Vahdat LT, Shah MA, Santana SM, Altavilla G, Kirby BJ, Giannakakou P.

Lab Chip. 2014 Jan 7;14(1):147-56. doi: 10.1039/c3lc51039e. Epub 2013 Nov 7.

5.

Highly efficient capture and enumeration of low abundance prostate cancer cells using prostate-specific membrane antigen aptamers immobilized to a polymeric microfluidic device.

Dharmasiri U, Balamurugan S, Adams AA, Okagbare PI, Obubuafo A, Soper SA.

Electrophoresis. 2009 Sep;30(18):3289-300. doi: 10.1002/elps.200900141.

6.

Isolation of circulating tumor cells using a microvortex-generating herringbone-chip.

Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, Rothenberg SM, Shah AM, Smas ME, Korir GK, Floyd FP Jr, Gilman AJ, Lord JB, Winokur D, Springer S, Irimia D, Nagrath S, Sequist LV, Lee RJ, Isselbacher KJ, Maheswaran S, Haber DA, Toner M.

Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18392-7. doi: 10.1073/pnas.1012539107. Epub 2010 Oct 7.

7.

Development of a low-cost magnetic microfluidic chip for circulating tumour cell capture.

Xia J, Chen X, Zhou CZ, Li YG, Peng ZH.

IET Nanobiotechnol. 2011 Dec;5(4):114-20. doi: 10.1049/iet-nbt.2011.0024.

PMID:
22149866
8.

Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells.

Lim LS, Hu M, Huang MC, Cheong WC, Gan AT, Looi XL, Leong SM, Koay ES, Li MH.

Lab Chip. 2012 Nov 7;12(21):4388-96. doi: 10.1039/c2lc20750h.

PMID:
22930096
9.

Separation and capture of circulating tumor cells from whole blood using a bypass integrated microfluidic trap array.

Yousang Yoon, Sunki Cho, Seonil Kim, Eunsuk Choi, Rae-Kwon Kim, Su-Jae Lee, Onejae Sul, Seung-Beck Lee.

Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4431-4. doi: 10.1109/EMBC.2014.6944607.

PMID:
25570975
10.

UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection.

Jackson JM, Witek MA, Hupert ML, Brady C, Pullagurla S, Kamande J, Aufforth RD, Tignanelli CJ, Torphy RJ, Yeh JJ, Soper SA.

Lab Chip. 2014 Jan 7;14(1):106-17. doi: 10.1039/c3lc50618e.

11.

Capture of esophageal and breast cancer cells with polymeric microfluidic devices for CTC isolation.

Ohnaga T, Shimada Y, Takata K, Obata T, Okumura T, Nagata T, Kishi H, Muraguchi A, Tsukada K.

Mol Clin Oncol. 2016 Apr;4(4):599-602. Epub 2016 Jan 19.

12.

Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells.

Tang Y, Shi J, Li S, Wang L, Cayre YE, Chen Y.

Sci Rep. 2014 Aug 13;4:6052. doi: 10.1038/srep06052.

13.

Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device.

Du Z, Cheng KH, Vaughn MW, Collie NL, Gollahon LS.

Biomed Microdevices. 2007 Feb;9(1):35-42.

PMID:
17103049
14.

All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity.

Lee A, Park J, Lim M, Sunkara V, Kim SY, Kim GH, Kim MH, Cho YK.

Anal Chem. 2014 Nov 18;86(22):11349-56. doi: 10.1021/ac5035049. Epub 2014 Oct 30.

PMID:
25317565
15.

Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients.

Hyun KA, Kwon K, Han H, Kim SI, Jung HI.

Biosens Bioelectron. 2013 Feb 15;40(1):206-12. doi: 10.1016/j.bios.2012.07.021. Epub 2012 Jul 21.

PMID:
22857995
16.

Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor.

Adams AA, Okagbare PI, Feng J, Hupert ML, Patterson D, Göttert J, McCarley RL, Nikitopoulos D, Murphy MC, Soper SA.

J Am Chem Soc. 2008 Jul 9;130(27):8633-41. doi: 10.1021/ja8015022. Epub 2008 Jun 17.

17.

Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis.

Hyun KA, Jung HI.

Electrophoresis. 2013 Apr;34(7):1028-41. doi: 10.1002/elps.201200417. Epub 2013 Mar 11. Review.

PMID:
23436295
18.

Isolation of tumor cells using size and deformation.

Mohamed H, Murray M, Turner JN, Caggana M.

J Chromatogr A. 2009 Nov 20;1216(47):8289-95. doi: 10.1016/j.chroma.2009.05.036. Epub 2009 May 21.

PMID:
19497576
19.

Microfluidic cell sorter (μFCS) for on-chip capture and analysis of single cells.

Chung J, Shao H, Reiner T, Issadore D, Weissleder R, Lee H.

Adv Healthc Mater. 2012 Jul;1(4):432-6. doi: 10.1002/adhm.201200046. Epub 2012 May 2.

20.

A cancer detection platform which measures telomerase activity from live circulating tumor cells captured on a microfilter.

Xu T, Lu B, Tai YC, Goldkorn A.

Cancer Res. 2010 Aug 15;70(16):6420-6. doi: 10.1158/0008-5472.CAN-10-0686. Epub 2010 Jul 27.

Supplemental Content

Support Center