Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.

Host metabolism promotes growth of Chlamydia pneumoniae in a low oxygen environment.

Szaszák M, Shima K, Käding N, Hannus M, Solbach W, Rupp J.

Int J Med Microbiol. 2013 Jul;303(5):239-46. doi: 10.1016/j.ijmm.2013.03.005. Epub 2013 Apr 6.

PMID:
23665044
2.

Growth of Chlamydia pneumoniae Is Enhanced in Cells with Impaired Mitochondrial Function.

Käding N, Kaufhold I, Müller C, Szaszák M, Shima K, Weinmaier T, Lomas R, Conesa A, Schmitt-Kopplin P, Rattei T, Rupp J.

Front Cell Infect Microbiol. 2017 Dec 5;7:499. doi: 10.3389/fcimb.2017.00499. eCollection 2017.

3.

Chlamydia pneumoniae directly interferes with HIF-1alpha stabilization in human host cells.

Rupp J, Gieffers J, Klinger M, van Zandbergen G, Wrase R, Maass M, Solbach W, Deiwick J, Hellwig-Burgel T.

Cell Microbiol. 2007 Sep;9(9):2181-91. Epub 2007 May 8.

PMID:
17490410
4.

Imaging of Chlamydia and host cell metabolism.

Käding N, Szaszák M, Rupp J.

Future Microbiol. 2014;9(4):509-21. doi: 10.2217/fmb.14.13. Review.

PMID:
24810350
5.

Host cell Golgi anti-apoptotic protein (GAAP) and growth of Chlamydia pneumoniae.

Markkula E, Hulkkonen J, Penttilä T, Puolakkainen M.

Microb Pathog. 2013 Jan;54:46-53. doi: 10.1016/j.micpath.2012.09.004. Epub 2012 Sep 21.

PMID:
23000903
6.

Chlamydia pneumoniae growth inhibition in cells by the steroid receptor antagonist RU486 (mifepristone).

Yamaguchi H, Kamiya S, Uruma T, Osaki T, Taguchi H, Hanawa T, Fukuda M, Kawakami H, Goto H, Friedman H, Yamamoto Y.

Antimicrob Agents Chemother. 2008 Jun;52(6):1991-8. doi: 10.1128/AAC.01416-07. Epub 2008 Mar 17.

7.

Chlamydia pneumoniae growth inhibition in human monocytic THP-1 cells and human epithelial HEp-2 cells by a novel phenoxazine derivative.

Uruma T, Yamaguchi H, Fukuda M, Kawakami H, Goto H, Kishimoto T, Yamamoto Y, Tomoda A, Kamiya S.

J Med Microbiol. 2005 Dec;54(Pt 12):1143-9.

PMID:
16278427
8.

Chlamydia pneumoniae effector chlamydial outer protein N sequesters fructose bisphosphate aldolase A, providing a benefit to bacterial growth.

Ishida K, Matsuo J, Yamamoto Y, Yamaguchi H.

BMC Microbiol. 2014 Dec 21;14:330. doi: 10.1186/s12866-014-0330-3.

9.

Low iron availability modulates the course of Chlamydia pneumoniae infection.

Al-Younes HM, Rudel T, Brinkmann V, Szczepek AJ, Meyer TF.

Cell Microbiol. 2001 Jun;3(6):427-37.

PMID:
11422085
10.

Flotillin-1 (Reggie-2) contributes to Chlamydia pneumoniae growth and is associated with bacterial inclusion.

Korhonen JT, Puolakkainen M, Häivälä R, Penttilä T, Haveri A, Markkula E, Lahesmaa R.

Infect Immun. 2012 Mar;80(3):1072-8. doi: 10.1128/IAI.05528-11. Epub 2012 Jan 3.

11.

Alveolar epithelial cells type II are major target cells for C. pneumoniae in chronic but not in acute respiratory infection.

Rupp J, Droemann D, Goldmann T, Zabel P, Solbach W, Vollmer E, Branscheid D, Dalhoff K, Maass M.

FEMS Immunol Med Microbiol. 2004 Jul 1;41(3):197-203.

12.

Apolipoprotein E4 enhances attachment of Chlamydophila (Chlamydia) pneumoniae elementary bodies to host cells.

Gérard HC, Fomicheva E, Whittum-Hudson JA, Hudson AP.

Microb Pathog. 2008 Apr;44(4):279-85. Epub 2007 Oct 18.

PMID:
17997273
13.

Microarray analysis of a Chlamydia pneumoniae-infected human epithelial cell line by use of gene ontology hierarchy.

Alvesalo J, Greco D, Leinonen M, Raitila T, Vuorela P, Auvinen P.

J Infect Dis. 2008 Jan 1;197(1):156-62. doi: 10.1086/524142.

PMID:
18171299
14.

Epithelial cells infected with Chlamydophila pneumoniae (Chlamydia pneumoniae) are resistant to apoptosis.

Rajalingam K, Al-Younes H, Müller A, Meyer TF, Szczepek AJ, Rudel T.

Infect Immun. 2001 Dec;69(12):7880-8.

15.

Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions.

Yamamoto S, Gunji W, Suzuki H, Toda H, Suda M, Jojima T, Inui M, Yukawa H.

Appl Environ Microbiol. 2012 Jun;78(12):4447-57. doi: 10.1128/AEM.07998-11. Epub 2012 Apr 13.

16.

Atherogenetically relevant cells support continuous growth of Chlamydia pneumoniae.

Maass M, Gieffers J, Solbach W.

Herz. 2000 Mar;25(2):68-72.

PMID:
10829241
17.

Serotonin and melatonin, neurohormones for homeostasis, as novel inhibitors of infections by the intracellular parasite chlamydia.

Rahman MA, Azuma Y, Fukunaga H, Murakami T, Sugi K, Fukushi H, Miura K, Suzuki H, Shirai M.

J Antimicrob Chemother. 2005 Nov;56(5):861-8. Epub 2005 Sep 19.

PMID:
16172105
18.

Chlamydia pneumoniae infection in polarized epithelial cell lines.

Törmäkangas L, Markkula E, Lounatmaa K, Puolakkainen M.

Infect Immun. 2010 Jun;78(6):2714-22. doi: 10.1128/IAI.01456-09. Epub 2010 Mar 29.

19.

Temperature and host cell-dependent changes in virulence of Chlamydia pneumoniae CWL029 in an optimized mouse infection model.

Janik K, Bode J, Dutow P, Laudeley R, Geffers R, Sommer K, Glage S, Klos A.

Pathog Dis. 2015 Feb;73(1):1-8. doi: 10.1093/femspd/ftu001. Epub 2014 Dec 4.

PMID:
25853997
20.

Characterization and intracellular localization of putative Chlamydia pneumoniae effector proteins.

Müller N, Sattelmacher F, Lugert R, Gross U.

Med Microbiol Immunol. 2008 Dec;197(4):387-96. doi: 10.1007/s00430-008-0097-y. Epub 2008 May 1.

Supplemental Content

Support Center