Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 161

1.

Toward clinical application of the Keap1-Nrf2 pathway.

Suzuki T, Motohashi H, Yamamoto M.

Trends Pharmacol Sci. 2013 Jun;34(6):340-6. doi: 10.1016/j.tips.2013.04.005. Review.

PMID:
23664668
2.

The Keap1-Nrf2 cell defense pathway--a promising therapeutic target?

Copple IM.

Adv Pharmacol. 2012;63:43-79. doi: 10.1016/B978-0-12-398339-8.00002-1. Review.

PMID:
22776639
3.

Molecular basis of the Keap1-Nrf2 system.

Suzuki T, Yamamoto M.

Free Radic Biol Med. 2015 Nov;88(Pt B):93-100. doi: 10.1016/j.freeradbiomed.2015.06.006. Review.

PMID:
26117331
4.

Regulatory role of KEAP1 and NRF2 in PPARγ expression and chemoresistance in human non-small-cell lung carcinoma cells.

Zhan L, Zhang H, Zhang Q, Woods CG, Chen Y, Xue P, Dong J, Tokar EJ, Xu Y, Hou Y, Fu J, Yarborough K, Wang A, Qu W, Waalkes MP, Andersen ME, Pi J.

Free Radic Biol Med. 2012 Aug 15;53(4):758-68. doi: 10.1016/j.freeradbiomed.2012.05.041.

5.

Role of the Keap1-Nrf2 pathway in cancer.

Leinonen HM, Kansanen E, Pölönen P, Heinäniemi M, Levonen AL.

Adv Cancer Res. 2014;122:281-320. doi: 10.1016/B978-0-12-420117-0.00008-6. Review.

PMID:
24974185
6.

Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer.

Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, Herman JG, Baylin SB, Sidransky D, Gabrielson E, Brock MV, Biswal S.

PLoS Med. 2006 Oct;3(10):e420.

7.

Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.

Taguchi K, Motohashi H, Yamamoto M.

Genes Cells. 2011 Feb;16(2):123-40. doi: 10.1111/j.1365-2443.2010.01473.x. Review.

8.

The role of Nrf2 in oxidative stress-induced endothelial injuries.

Chen B, Lu Y, Chen Y, Cheng J.

J Endocrinol. 2015 Jun;225(3):R83-99. doi: 10.1530/JOE-14-0662. Review.

9.

Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells.

Yang X, Wang D, Ma Y, Xu X, Zhu Z, Wang X, Deng H, Li C, Chen M, Tong J, Yamanaka K, An Y.

Toxicol Appl Pharmacol. 2015 Dec 1;289(2):231-9. doi: 10.1016/j.taap.2015.09.020.

PMID:
26420645
10.

Cross-regulations among NRFs and KEAP1 and effects of their silencing on arsenic-induced antioxidant response and cytotoxicity in human keratinocytes.

Zhao R, Hou Y, Zhang Q, Woods CG, Xue P, Fu J, Yarborough K, Guan D, Andersen ME, Pi J.

Environ Health Perspect. 2012 Apr;120(4):583-9. doi: 10.1289/ehp.1104580.

11.

Chemopreventive promise of targeting the Nrf2 pathway.

Yates MS, Kensler TW.

Drug News Perspect. 2007 Mar;20(2):109-17. Review.

PMID:
17440634
12.

The emerging role of the Nrf2-Keap1 signaling pathway in cancer.

Jaramillo MC, Zhang DD.

Genes Dev. 2013 Oct 15;27(20):2179-91. doi: 10.1101/gad.225680.113. Review.

13.

The Keap1-Nrf2 system and diabetes mellitus.

Uruno A, Yagishita Y, Yamamoto M.

Arch Biochem Biophys. 2015 Jan 15;566:76-84. doi: 10.1016/j.abb.2014.12.012. Review.

PMID:
25528168
14.

Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents.

Magesh S, Chen Y, Hu L.

Med Res Rev. 2012 Jul;32(4):687-726. doi: 10.1002/med.21257. Review.

15.

UHRF1 regulation of the Keap1-Nrf2 pathway in pancreatic cancer contributes to oncogenesis.

Abu-Alainin W, Gana T, Liloglou T, Olayanju A, Barrera LN, Ferguson R, Campbell F, Andrews T, Goldring C, Kitteringham N, Park BK, Nedjadi T, Schmid MC, Slupsky JR, Greenhalf W, Neoptolemos JP, Costello E.

J Pathol. 2016 Feb;238(3):423-33. doi: 10.1002/path.4665.

16.

The autophagy pathway maintained signaling crosstalk with the Keap1-Nrf2 system through p62 in auditory cells under oxidative stress.

Hayashi K, Dan K, Goto F, Tshuchihashi N, Nomura Y, Fujioka M, Kanzaki S, Ogawa K.

Cell Signal. 2015 Feb;27(2):382-93. doi: 10.1016/j.cellsig.2014.11.024.

PMID:
25435427
17.

Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy.

Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R, Tsuta K, Asamura H, Yamamoto M, Hirohashi S.

Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13568-73. doi: 10.1073/pnas.0806268105. Erratum in: Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10393.

18.

Acetyl-l-carnitine prevents homocysteine-induced suppression of Nrf2/Keap1 mediated antioxidation in human lens epithelial cells.

Yang SP, Yang XZ, Cao GP.

Mol Med Rep. 2015 Jul;12(1):1145-50. doi: 10.3892/mmr.2015.3490.

PMID:
25776802
19.

Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth.

Zhang P, Singh A, Yegnasubramanian S, Esopi D, Kombairaju P, Bodas M, Wu H, Bova SG, Biswal S.

Mol Cancer Ther. 2010 Feb;9(2):336-46. doi: 10.1158/1535-7163.MCT-09-0589.

20.

Mechanistic studies of the Nrf2-Keap1 signaling pathway.

Zhang DD.

Drug Metab Rev. 2006;38(4):769-89. Review.

PMID:
17145701
Items per page

Supplemental Content

Support Center