Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 78


Robo3-driven axon midline crossing conditions functional maturation of a large commissural synapse.

Michalski N, Babai N, Renier N, Perkel DJ, Chédotal A, Schneggenburger R.

Neuron. 2013 Jun 5;78(5):855-68. doi: 10.1016/j.neuron.2013.04.006. Epub 2013 May 9.


The Munc13 proteins differentially regulate readily releasable pool dynamics and calcium-dependent recovery at a central synapse.

Chen Z, Cooper B, Kalla S, Varoqueaux F, Young SM Jr.

J Neurosci. 2013 May 8;33(19):8336-51. doi: 10.1523/JNEUROSCI.5128-12.2013.


Preparing for your future as you grow.

Scheiffele P.

Neuron. 2013 Jun 5;78(5):751-2. doi: 10.1016/j.neuron.2013.05.031.


Crucial roles of Robo proteins in midline crossing of cerebellofugal axons and lack of their up-regulation after midline crossing.

Tamada A, Kumada T, Zhu Y, Matsumoto T, Hatanaka Y, Muguruma K, Chen Z, Tanabe Y, Torigoe M, Yamauchi K, Oyama H, Nishida K, Murakami F.

Neural Dev. 2008 Nov 5;3:29. doi: 10.1186/1749-8104-3-29.


GABAergic inhibition regulates developmental synapse elimination in the cerebellum.

Nakayama H, Miyazaki T, Kitamura K, Hashimoto K, Yanagawa Y, Obata K, Sakimura K, Watanabe M, Kano M.

Neuron. 2012 Apr 26;74(2):384-96. doi: 10.1016/j.neuron.2012.02.032.


Collaborative and specialized functions of Robo1 and Robo2 in spinal commissural axon guidance.

Jaworski A, Long H, Tessier-Lavigne M.

J Neurosci. 2010 Jul 14;30(28):9445-53. doi: 10.1523/JNEUROSCI.6290-09.2010.


Organotypic coculture preparation for the study of developmental synapse elimination in mammalian brain.

Uesaka N, Mikuni T, Hashimoto K, Hirai H, Sakimura K, Kano M.

J Neurosci. 2012 Aug 22;32(34):11657-70.


Semaphorin 3E-Plexin-D1 signaling controls pathway-specific synapse formation in the striatum.

Ding JB, Oh WJ, Sabatini BL, Gu C.

Nat Neurosci. 2011 Dec 18;15(2):215-23. doi: 10.1038/nn.3003.


Sensory and spinal inhibitory dorsal midline crossing is independent of Robo3.

Comer JD, Pan FC, Willet SG, Haldipur P, Millen KJ, Wright CV, Kaltschmidt JA.

Front Neural Circuits. 2015 Jul 23;9:36. doi: 10.3389/fncir.2015.00036. eCollection 2015.


Synaptic vesicles in mature calyx of Held synapses sense higher nanodomain calcium concentrations during action potential-evoked glutamate release.

Wang LY, Neher E, Taschenberger H.

J Neurosci. 2008 Dec 31;28(53):14450-8. doi: 10.1523/JNEUROSCI.4245-08.2008.


Developmental transformation of the release modality at the calyx of Held synapse.

Fedchyshyn MJ, Wang LY.

J Neurosci. 2005 Apr 20;25(16):4131-40.


NGL-2 regulates input-specific synapse development in CA1 pyramidal neurons.

DeNardo LA, de Wit J, Otto-Hitt S, Ghosh A.

Neuron. 2012 Nov 21;76(4):762-75. doi: 10.1016/j.neuron.2012.10.013.


Disruption of the presynaptic cytomatrix protein bassoon degrades ribbon anchorage, multiquantal release, and sound encoding at the hair cell afferent synapse.

Jing Z, Rutherford MA, Takago H, Frank T, Fejtova A, Khimich D, Moser T, Strenzke N.

J Neurosci. 2013 Mar 6;33(10):4456-67. doi: 10.1523/JNEUROSCI.3491-12.2013.


BMP signaling specifies the development of a large and fast CNS synapse.

Xiao L, Michalski N, Kronander E, Gjoni E, Genoud C, Knott G, Schneggenburger R.

Nat Neurosci. 2013 Jul;16(7):856-64. doi: 10.1038/nn.3414. Epub 2013 May 26.


Presynaptic Ca2+ requirements and developmental regulation of posttetanic potentiation at the calyx of Held.

Korogod N, Lou X, Schneggenburger R.

J Neurosci. 2005 May 25;25(21):5127-37.


Cysteine string protein-alpha prevents activity-dependent degeneration in GABAergic synapses.

García-Junco-Clemente P, Cantero G, Gómez-Sánchez L, Linares-Clemente P, Martínez-López JA, Luján R, Fernández-Chacón R.

J Neurosci. 2010 May 26;30(21):7377-91. doi: 10.1523/JNEUROSCI.0924-10.2010.


Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors.

Elmariah SB, Oh EJ, Hughes EG, Balice-Gordon RJ.

J Neurosci. 2005 Apr 6;25(14):3638-50.


Dbx1 triggers crucial molecular programs required for midline crossing by midbrain commissural axons.

Inamata Y, Shirasaki R.

Development. 2014 Mar;141(6):1260-71. doi: 10.1242/dev.102327. Epub 2014 Feb 19.


Molecular guidance cues necessary for axon pathfinding from the ventral cochlear nucleus.

Howell DM, Morgan WJ, Jarjour AA, Spirou GA, Berrebi AS, Kennedy TE, Mathers PH.

J Comp Neurol. 2007 Oct 10;504(5):533-49.


The Drosophila immunoglobulin gene turtle encodes guidance molecules involved in axon pathfinding.

Al-Anzi B, Wyman RJ.

Neural Dev. 2009 Aug 17;4:31. doi: 10.1186/1749-8104-4-31.

Supplemental Content

Support Center