Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Enhanced solar energy conversion in Au-doped, single-wall carbon nanotube-Si heterojunction cells.

Chen L, He H, Zhang S, Xu C, Zhao J, Zhao S, Mi Y, Yang D.

Nanoscale Res Lett. 2013 May 10;8(1):225. doi: 10.1186/1556-276X-8-225.

2.

Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications.

Sharma M, Pudasaini PR, Ruiz-Zepeda F, Vinogradova E, Ayon AA.

ACS Appl Mater Interfaces. 2014 Sep 10;6(17):15472-9. doi: 10.1021/am5040939. Epub 2014 Aug 28.

PMID:
25137194
3.

Enhanced Power Conversion Efficiency of Graphene/Silicon Heterojunction Solar Cells Through NiO Induced Doping.

Kuru C, Yavuz S, Kargar A, Choi D, Choi C, Rustomji C, Jin S, Bandaru PR.

J Nanosci Nanotechnol. 2016 Jan;16(1):1190-3.

PMID:
27398585
4.

Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma.

Hsieh PY, Lee CY, Tai NH.

ACS Appl Mater Interfaces. 2016 Feb;8(7):4624-32. doi: 10.1021/acsami.5b11151. Epub 2016 Feb 9.

PMID:
26815945
5.

Current enhancement of aluminum doped ZnO/n-Si isotype heterojunction solar cells by embedding silver nanoparticles.

Yun J, Kim J, Kojori HS, Kim SJ, Tong C, Anderson WA.

J Nanosci Nanotechnol. 2013 Aug;13(8):5547-51.

PMID:
23882792
6.

Enhanced Performance of Polymeric Bulk Heterojunction Solar Cells via Molecular Doping with TFSA.

Xiao Y, Wang H, Zhou S, Yan K, Guan Z, Tsang SW, Xu J.

ACS Appl Mater Interfaces. 2015 Jun 24;7(24):13415-21. doi: 10.1021/acsami.5b02104. Epub 2015 Jun 10.

PMID:
26039377
7.

Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping.

Jia Y, Cao A, Bai X, Li Z, Zhang L, Guo N, Wei J, Wang K, Zhu H, Wu D, Ajayan PM.

Nano Lett. 2011 May 11;11(5):1901-5. doi: 10.1021/nl2002632. Epub 2011 Mar 31.

PMID:
21452837
8.

Photovoltaic device performance of single-walled carbon nanotube and polyaniline films on n-Si: device structure analysis.

Bourdo SE, Saini V, Piron J, Al-Brahim I, Boyer C, Rioux J, Bairi V, Biris AS, Viswanathan T.

ACS Appl Mater Interfaces. 2012 Jan;4(1):363-8. doi: 10.1021/am201426y. Epub 2012 Jan 12.

PMID:
22200124
9.

Electronic junction control in a nanotube-semiconductor Schottky junction solar cell.

Wadhwa P, Liu B, McCarthy MA, Wu Z, Rinzler AG.

Nano Lett. 2010 Dec 8;10(12):5001-5. doi: 10.1021/nl103128a. Epub 2010 Nov 3.

PMID:
21047122
10.

Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S, Ohno Y, Matsuda K.

Nat Commun. 2015 Feb 18;6:6305. doi: 10.1038/ncomms7305.

PMID:
25692264
11.

Fabrication of Si heterojunction solar cells using P-doped Si nanocrystals embedded in SiNx films as emitters.

Wu PJ, Wang YC, Chen IC.

Nanoscale Res Lett. 2013 Nov 5;8(1):457. doi: 10.1186/1556-276X-8-457.

12.

Silicon quantum dot/crystalline silicon solar cells.

Cho EC, Park S, Hao X, Song D, Conibeer G, Park SC, Green MA.

Nanotechnology. 2008 Jun 18;19(24):245201. doi: 10.1088/0957-4484/19/24/245201. Epub 2008 May 9.

PMID:
21825804
13.
14.

Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions.

Li Z, Kunets VP, Saini V, Xu Y, Dervishi E, Salamo GJ, Biris AR, Biris AS.

ACS Nano. 2009 Jun 23;3(6):1407-14. doi: 10.1021/nn900197h.

PMID:
19456166
15.

High efficiency graphene solar cells by chemical doping.

Miao X, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard AF.

Nano Lett. 2012 Jun 13;12(6):2745-50. doi: 10.1021/nl204414u. Epub 2012 May 10.

PMID:
22554195
16.

On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell.

Petterson MK, Lemaitre MG, Shen Y, Wadhwa P, Hou J, Vasilyeva SV, Kravchenko II, Rinzler AG.

ACS Appl Mater Interfaces. 2015 Sep 30;7(38):21182-7. doi: 10.1021/acsami.5b05010. Epub 2015 Sep 17.

PMID:
26352052
17.

Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.

Heremans P, Cheyns D, Rand BP.

Acc Chem Res. 2009 Nov 17;42(11):1740-7. doi: 10.1021/ar9000923.

PMID:
19751055
18.

Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells.

Kuang C, Tang G, Jiu T, Yang H, Liu H, Li B, Luo W, Li X, Zhang W, Lu F, Fang J, Li Y.

Nano Lett. 2015 Apr 8;15(4):2756-62. doi: 10.1021/acs.nanolett.5b00787. Epub 2015 Mar 26.

PMID:
25803148
19.

Controlled doping of carbon nanotubes with metallocenes for application in hybrid carbon nanotube/Si solar cells.

Li X, Guard LM, Jiang J, Sakimoto K, Huang JS, Wu J, Li J, Yu L, Pokhrel R, Brudvig GW, Ismail-Beigi S, Hazari N, Taylor AD.

Nano Lett. 2014 Jun 11;14(6):3388-94. doi: 10.1021/nl500894h. Epub 2014 May 13.

PMID:
24779408
20.

Bifunctional Polymer Nanocomposites as Hole-Transport Layers for Efficient Light Harvesting: Application to Perovskite Solar Cells.

Wang JY, Hsu FC, Huang JY, Wang L, Chen YF.

ACS Appl Mater Interfaces. 2015 Dec 23;7(50):27676-84. doi: 10.1021/acsami.5b08157. Epub 2015 Dec 9.

PMID:
26602026

Supplemental Content

Support Center