Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 68

1.

Design of a bi-functional peptide for protein assays: observation of cortactin expression in human placenta.

Li H, Xie H, Yang N, Huang Y, Sun L, Li G.

Chem Commun (Camb). 2013 Jun 14;49(47):5387-9. doi: 10.1039/c3cc42353k.

PMID:
23657365
2.

Recognition of lysine-rich peptide ligands by murine cortactin SH3 domain: CD, ITC, and NMR studies.

Rubini C, Ruzza P, Spaller MR, Siligardi G, Hussain R, Udugamasooriya DG, Bellanda M, Mammi S, Borgogno A, Calderan A, Cesaro L, Brunati AM, Donella-Deana A.

Biopolymers. 2010;94(3):298-306. doi: 10.1002/bip.21350.

PMID:
19921743
3.

Targeting AMAP1 and cortactin binding bearing an atypical src homology 3/proline interface for prevention of breast cancer invasion and metastasis.

Hashimoto S, Hirose M, Hashimoto A, Morishige M, Yamada A, Hosaka H, Akagi K, Ogawa E, Oneyama C, Agatsuma T, Okada M, Kobayashi H, Wada H, Nakano H, Ikegami T, Nakagawa A, Sabe H.

Proc Natl Acad Sci U S A. 2006 May 2;103(18):7036-41. Epub 2006 Apr 24.

4.

The impact of either 4-R-hydroxyproline or 4-R-fluoroproline on the conformation and SH3m-cort binding of HPK1 proline-rich peptide.

Borgogno A, Ruzza P.

Amino Acids. 2013 Feb;44(2):607-14. doi: 10.1007/s00726-012-1383-y. Epub 2012 Sep 14.

PMID:
22976002
5.

Cortactin controls surface expression of the voltage-gated potassium channel K(V)10.1.

Herrmann S, Ninkovic M, Kohl T, Lörinczi É, Pardo LA.

J Biol Chem. 2012 Dec 28;287(53):44151-63. doi: 10.1074/jbc.M112.372540. Epub 2012 Nov 9.

6.

Coordination of Ni2+ and Cu2+ to metal ion binding domains of E. coli SlyD protein.

Witkowska D, Valensin D, Rowinska-Zyrek M, Karafova A, Kamysz W, Kozlowski H.

J Inorg Biochem. 2012 Feb;107(1):73-81. doi: 10.1016/j.jinorgbio.2011.11.012. Epub 2011 Nov 29.

PMID:
22178668
7.

Harnessing the flexibility of peptidic scaffolds to control their copper(II)-coordination properties: a potentiometric and spectroscopic study.

Fragoso A, Lamosa P, Delgado R, Iranzo O.

Chemistry. 2013 Feb 4;19(6):2076-88. doi: 10.1002/chem.201203545. Epub 2013 Jan 4.

PMID:
23293061
8.

Cortactin phosphorylation sites mapped by mass spectrometry.

Martin KH, Jeffery ED, Grigera PR, Shabanowitz J, Hunt DF, Parsons JT.

J Cell Sci. 2006 Jul 15;119(Pt 14):2851-3. No abstract available.

9.

HER2 carboxyl-terminal fragments regulate cell migration and cortactin phosphorylation.

García-Castillo J, Pedersen K, Angelini PD, Bech-Serra JJ, Colomé N, Cunningham MP, Parra-Palau JL, Canals F, Baselga J, Arribas J.

J Biol Chem. 2009 Sep 11;284(37):25302-13. doi: 10.1074/jbc.M109.001982. Epub 2009 Jul 8.

10.

Cortactin adopts a globular conformation and bundles actin into sheets.

Cowieson NP, King G, Cookson D, Ross I, Huber T, Hume DA, Kobe B, Martin JL.

J Biol Chem. 2008 Jun 6;283(23):16187-93. doi: 10.1074/jbc.M708917200. Epub 2008 Mar 27.

11.

Mono- and polynuclear copper(II) complexes with fragment of alloferons 1 and 2; combined potentiometric and spectroscopic studies.

Kowalik-Jankowska T, Jezierska J, Kuczer M.

Dalton Trans. 2010 May 7;39(17):4117-25. doi: 10.1039/b923491h. Epub 2010 Mar 17.

PMID:
20390174
12.

Tunable energy transfer rates via control of primary, secondary, and tertiary structure of a coiled coil peptide scaffold.

Wilger DJ, Bettis SE, Materese CK, Minakova M, Papoian GA, Papanikolas JM, Waters ML.

Inorg Chem. 2012 Nov 5;51(21):11324-38. doi: 10.1021/ic300669t. Epub 2012 Jun 8.

PMID:
22679929
13.

Unexpected impact of the number of glutamine residues on metal complex stability.

Chiera NM, Rowinska-Zyrek M, Wieczorek R, Guerrini R, Witkowska D, Remelli M, Kozlowski H.

Metallomics. 2013 Mar;5(3):214-21. doi: 10.1039/c3mt20166j.

PMID:
23370132
14.

Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCgamma, Crk, and Grb2.

Sparks AB, Rider JE, Hoffman NG, Fowlkes DM, Quillam LA, Kay BK.

Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1540-4.

15.

The coordination abilities of the multiHis-cyclopeptide with two metal-binding centers--potentiometric and spectroscopic investigation.

Kotynia A, Bielińska S, Kamysz W, Brasuń J.

Dalton Trans. 2012 Oct 21;41(39):12114-20.

PMID:
22918544
16.

Phosphorylation of cortactin by p21-activated kinase.

Webb BA, Zhou S, Eves R, Shen L, Jia L, Mak AS.

Arch Biochem Biophys. 2006 Dec 15;456(2):183-93. Epub 2006 Jun 30.

PMID:
16854367
17.

Dissociation of copper(II) ternary complexes containing cystine.

Ke Y, Zhao J, Siu KW, Hopkinson AC.

Phys Chem Chem Phys. 2010 Aug 21;12(31):9017-28. doi: 10.1039/c001908a. Epub 2010 Jun 10.

PMID:
20539872
18.

Interaction of divalent cations with peptide fragments from Parkinson's disease genes.

Remelli M, Peana M, Medici S, Delogu LG, Zoroddu MA.

Dalton Trans. 2013 May 7;42(17):5964-74. doi: 10.1039/c2dt32222f. Epub 2012 Nov 30.

PMID:
23202360
19.

Specific interactions of Bi(III) with the Cys-Xaa-Cys unit of a peptide sequence.

Rowinska-Zyrek M, Valensin D, Szyrwiel L, Grzonka Z, Kozlowski H.

Dalton Trans. 2009 Nov 14;(42):9131-40. doi: 10.1039/b913430a. Epub 2009 Sep 3.

PMID:
20449188
20.

A doppel alpha-helix peptide fragment mimics the copper(II) interactions with the whole protein.

La Mendola D, Magrì A, Campagna T, Campitiello MA, Raiola L, Isernia C, Hansson O, Bonomo RP, Rizzarelli E.

Chemistry. 2010 Jun 1;16(21):6212-23. doi: 10.1002/chem.200902405.

PMID:
20411530

Supplemental Content

Support Center