Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

A review of the combination of experimental measurements and fibril-reinforced modeling for investigation of articular cartilage and chondrocyte response to loading.

Julkunen P, Wilson W, Isaksson H, Jurvelin JS, Herzog W, Korhonen RK.

Comput Math Methods Med. 2013;2013:326150. doi: 10.1155/2013/326150. Epub 2013 Apr 8. Review.

2.

Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.

Korhonen RK, Julkunen P, Wilson W, Herzog W.

J Biomech Eng. 2008 Apr;130(2):021003. doi: 10.1115/1.2898725.

PMID:
18412490
3.

A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking.

Tanska P, Mononen ME, Korhonen RK.

J Biomech. 2015 Jun 1;48(8):1397-406. doi: 10.1016/j.jbiomech.2015.02.043. Epub 2015 Mar 6.

PMID:
25795269
4.

Calcium/calmodulin-dependent protein kinase II in human articular chondrocytes.

Shimazaki A, Wright MO, Elliot K, Salter DM, Millward-Sadler SJ.

Biorheology. 2006;43(3-4):223-33.

PMID:
16912396
5.

Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics-a 3D finite element analysis.

Mononen ME, Mikkola MT, Julkunen P, Ojala R, Nieminen MT, Jurvelin JS, Korhonen RK.

J Biomech. 2012 Feb 2;45(3):579-87. doi: 10.1016/j.jbiomech.2011.11.003. Epub 2011 Nov 30.

PMID:
22137088
6.

Biomechanical properties and mechanobiology of the articular chondrocyte.

Chen C, Tambe DT, Deng L, Yang L.

Am J Physiol Cell Physiol. 2013 Dec 15;305(12):C1202-8. doi: 10.1152/ajpcell.00242.2013. Epub 2013 Sep 25. Review.

7.

A fibril-reinforced poroviscoelastic swelling model for articular cartilage.

Wilson W, van Donkelaar CC, van Rietbergen B, Huiskes R.

J Biomech. 2005 Jun;38(6):1195-204. Erratum in: J Biomech. 2005 Oct;38(10):2138-40.

PMID:
15863103
9.

Osmotic loading of articular cartilage modulates cell deformations along primary collagen fibril directions.

Korhonen RK, Han SK, Herzog W.

J Biomech. 2010 Mar 3;43(4):783-7. doi: 10.1016/j.jbiomech.2009.10.022. Epub 2009 Nov 4.

PMID:
19892355
10.

The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage.

Han SK, Federico S, Grillo A, Giaquinta G, Herzog W.

Biomech Model Mechanobiol. 2007 Apr;6(3):139-50. Epub 2006 Feb 28.

PMID:
16506020
11.

Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study.

Wilson W, van Donkelaar CC, van Rietbergen B, Ito K, Huiskes R.

J Biomech. 2004 Mar;37(3):357-66. Erratum in: J Biomech. 2005 Oct;38(10):2138-40.

PMID:
14757455
12.

Computational aspects in mechanical modeling of the articular cartilage tissue.

Mohammadi H, Mequanint K, Herzog W.

Proc Inst Mech Eng H. 2013 Apr;227(4):402-20. doi: 10.1177/0954411912470239. Epub 2013 Jan 23. Review.

PMID:
23637216
13.

Comparison of different material models of articular cartilage in 3D computational modeling of the knee: Data from the Osteoarthritis Initiative (OAI).

Klets O, Mononen ME, Tanska P, Nieminen MT, Korhonen RK, Saarakkala S.

J Biomech. 2016 Dec 8;49(16):3891-3900. doi: 10.1016/j.jbiomech.2016.10.025. Epub 2016 Oct 25.

PMID:
27825602
14.

A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: continuum basis, computational aspects and applications.

Pierce DM, Ricken T, Holzapfel GA.

Comput Methods Biomech Biomed Engin. 2013;16(12):1344-61. doi: 10.1080/10255842.2012.670854. Epub 2012 Jul 6.

PMID:
22764882
15.

Contribution of tissue composition and structure to mechanical response of articular cartilage under different loading geometries and strain rates.

Julkunen P, Jurvelin JS, Isaksson H.

Biomech Model Mechanobiol. 2010 Apr;9(2):237-45. doi: 10.1007/s10237-009-0169-y. Epub 2009 Aug 13.

PMID:
19680701
16.

Ultrasound speed varies in articular cartilage under indentation loading.

Lötjönen P, Julkunen P, Tiitu V, Jurvelin JS, Töyräs J.

IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Dec;58(12):2772-80. doi: 10.1109/TUFFC.2011.2143.

PMID:
23443716
17.

Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model.

Julkunen P, Kiviranta P, Wilson W, Jurvelin JS, Korhonen RK.

J Biomech. 2007;40(8):1862-70. Epub 2006 Oct 18.

PMID:
17052722
18.
19.

Stress-relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure.

Julkunen P, Wilson W, Jurvelin JS, Rieppo J, Qu CJ, Lammi MJ, Korhonen RK.

J Biomech. 2008;41(9):1978-86. doi: 10.1016/j.jbiomech.2008.03.026. Epub 2008 May 19.

PMID:
18490021
20.

Effects of shear stress on articular chondrocyte metabolism.

Lane Smith R, Trindade MC, Ikenoue T, Mohtai M, Das P, Carter DR, Goodman SB, Schurman DJ.

Biorheology. 2000;37(1-2):95-107. Review.

PMID:
10912182

Supplemental Content

Support Center