Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

Lysine trimethylation of EF-Tu mimics platelet-activating factor to initiate Pseudomonas aeruginosa pneumonia.

Barbier M, Owings JP, Martínez-Ramos I, Damron FH, Gomila R, Blázquez J, Goldberg JB, Albertí S.

MBio. 2013 May 7;4(3):e00207-13. doi: 10.1128/mBio.00207-13.

2.

Pseudomonas aeruginosa EftM Is a Thermoregulated Methyltransferase.

Owings JP, Kuiper EG, Prezioso SM, Meisner J, Varga JJ, Zelinskaya N, Dammer EB, Duong DM, Seyfried NT, Albertí S, Conn GL, Goldberg JB.

J Biol Chem. 2016 Feb 12;291(7):3280-90. doi: 10.1074/jbc.M115.706853. Epub 2015 Dec 16.

3.

Novel phosphorylcholine-containing protein of Pseudomonas aeruginosa chronic infection isolates interacts with airway epithelial cells.

Barbier M, Oliver A, Rao J, Hanna SL, Goldberg JB, Albertí S.

J Infect Dis. 2008 Feb 1;197(3):465-73. doi: 10.1086/525048.

PMID:
18184091
4.

Relative contribution of three main virulence factors in Pseudomonas aeruginosa pneumonia.

Le Berre R, Nguyen S, Nowak E, Kipnis E, Pierre M, Quenee L, Ader F, Lancel S, Courcol R, Guery BP, Faure K; Pyopneumagen Group.

Crit Care Med. 2011 Sep;39(9):2113-20. doi: 10.1097/CCM.0b013e31821e899f.

PMID:
21572326
5.
6.

Type III secretion of ExoU is critical during early Pseudomonas aeruginosa pneumonia.

Howell HA, Logan LK, Hauser AR.

MBio. 2013 Mar 12;4(2):e00032-13. doi: 10.1128/mBio.00032-13.

8.

The ADP-ribosyltransferase domain of the effector protein ExoS inhibits phagocytosis of Pseudomonas aeruginosa during pneumonia.

Rangel SM, Logan LK, Hauser AR.

MBio. 2014 Jun 10;5(3):e01080-14. doi: 10.1128/mBio.01080-14.

9.

Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins.

Granato D, Bergonzelli GE, Pridmore RD, Marvin L, Rouvet M, Corthésy-Theulaz IE.

Infect Immun. 2004 Apr;72(4):2160-9.

10.

Risk of developing pneumonia is enhanced by the combined traits of fluoroquinolone resistance and type III secretion virulence in respiratory isolates of Pseudomonas aeruginosa.

Sullivan E, Bensman J, Lou M, Agnello M, Shriner K, Wong-Beringer A.

Crit Care Med. 2014 Jan;42(1):48-56. doi: 10.1097/CCM.0b013e318298a86f.

PMID:
23963124
11.

Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands.

Chemani C, Imberty A, de Bentzmann S, Pierre M, Wimmerová M, Guery BP, Faure K.

Infect Immun. 2009 May;77(5):2065-75. doi: 10.1128/IAI.01204-08. Epub 2009 Feb 23.

12.

Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection.

Feldman M, Bryan R, Rajan S, Scheffler L, Brunnert S, Tang H, Prince A.

Infect Immun. 1998 Jan;66(1):43-51.

14.
16.

[Pneumonia due to Pseudomonas aeruginosa].

Vallés J, Mariscal D.

Enferm Infecc Microbiol Clin. 2005 Dec;23 Suppl 3:30-6. Review. Spanish.

PMID:
16854339
17.
18.
19.

A novel receptor - ligand pathway for entry of Francisella tularensis in monocyte-like THP-1 cells: interaction between surface nucleolin and bacterial elongation factor Tu.

Barel M, Hovanessian AG, Meibom K, Briand JP, Dupuis M, Charbit A.

BMC Microbiol. 2008 Sep 12;8:145. doi: 10.1186/1471-2180-8-145.

20.

The peptide chain release factor methyltransferase PrmC is essential for pathogenicity and environmental adaptation of Pseudomonas aeruginosa PA14.

Pustelny C, Brouwer S, Müsken M, Bielecka A, Dötsch A, Nimtz M, Häussler S.

Environ Microbiol. 2013 Feb;15(2):597-609. doi: 10.1111/1462-2920.12040. Epub 2012 Dec 28.

PMID:
23278968

Supplemental Content

Support Center