Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 69

1.

Highly potent and stable capped siRNAs with picomolar activity for RNA interference.

Wei L, Cao L, Xi Z.

Angew Chem Int Ed Engl. 2013 Jun 17;52(25):6501-3. doi: 10.1002/anie.201301122. Epub 2013 May 7. No abstract available.

PMID:
23653439
2.

RNA interference induced by siRNAs modified with 4'-thioribonucleosides.

Hoshika S, Minakawa N, Matsuda A.

Nucleic Acids Symp Ser (Oxf). 2005;(49):77-8.

PMID:
17150641
3.

RNA interference induced by siRNAs modified with 4'-thioribonucleosides in cultured mammalian cells.

Hoshika S, Minakawa N, Kamiya H, Harashima H, Matsuda A.

FEBS Lett. 2005 Jun 6;579(14):3115-8.

4.

Identification of sequence features that predict competition potency of siRNAs.

Li X, Yoo JW, Lee JH, Hahn Y, Kim S, Lee DK.

Biochem Biophys Res Commun. 2010 Jul 16;398(1):92-7. doi: 10.1016/j.bbrc.2010.06.041. Epub 2010 Jun 15.

PMID:
20558136
5.

Designing optimal siRNA based on target site accessibility.

Hofacker IL, Tafer H.

Methods Mol Biol. 2010;623:137-54. doi: 10.1007/978-1-60761-588-0_9.

PMID:
20217549
6.
7.

Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection.

Sano M, Sierant M, Miyagishi M, Nakanishi M, Takagi Y, Sutou S.

Nucleic Acids Res. 2008 Oct;36(18):5812-21. doi: 10.1093/nar/gkn584. Epub 2008 Sep 9.

8.

Rational design and in vitro and in vivo delivery of Dicer substrate siRNA.

Amarzguioui M, Lundberg P, Cantin E, Hagstrom J, Behlke MA, Rossi JJ.

Nat Protoc. 2006;1(2):508-17.

PMID:
17406276
9.

RNA interference in vivo: toward synthetic small inhibitory RNA-based therapeutics.

de Fougerolles A, Manoharan M, Meyers R, Vornlocher HP.

Methods Enzymol. 2005;392:278-96.

PMID:
15644187
10.

RNA interference and chemically modified siRNAs.

Manoharan M.

Nucleic Acids Res Suppl. 2003;(3):115-6.

PMID:
14510407
11.

Selecting effective siRNAs based on guide RNA structure.

Köberle C, Kaufmann SH, Patzel V.

Nat Protoc. 2006;1(4):1832-9.

PMID:
17487166
12.

Rational siRNA design for RNA interference.

Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A.

Nat Biotechnol. 2004 Mar;22(3):326-30. Epub 2004 Feb 1.

13.

siVirus: web-based antiviral siRNA design software for highly divergent viral sequences.

Naito Y, Ui-Tei K, Nishikawa T, Takebe Y, Saigo K.

Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W448-50.

14.

Design of small interfering RNAs for antiviral applications.

Rothe D, Wade EJ, Kurreck J.

Methods Mol Biol. 2011;721:267-92. doi: 10.1007/978-1-61779-037-9_17.

PMID:
21431692
15.

Evaluation of siRNAs that contain internal variable-length spacer linkages.

Efthymiou TC, Peel B, Huynh V, Desaulniers JP.

Bioorg Med Chem Lett. 2012 Sep 1;22(17):5590-4. doi: 10.1016/j.bmcl.2012.07.006. Epub 2012 Jul 16.

PMID:
22850216
16.

Single-stranded siRNAs activate RNAi in animals.

Lima WF, Prakash TP, Murray HM, Kinberger GA, Li W, Chappell AE, Li CS, Murray SF, Gaus H, Seth PP, Swayze EE, Crooke ST.

Cell. 2012 Aug 31;150(5):883-94. doi: 10.1016/j.cell.2012.08.014.

17.

[Molecular mechanism of RNA interference and the selection of highly effective siRNA sequences].

Ui-Tei K, Saigo K.

Tanpakushitsu Kakusan Koso. 2004 Dec;49(17 Suppl):2662-70. Review. Japanese. No abstract available.

PMID:
15669236
18.

Design of nuclease-resistant fork-like small interfering RNA (fsiRNA).

Chernolovskaya EL, Zenkova MA.

Methods Mol Biol. 2013;942:153-68. doi: 10.1007/978-1-62703-119-6_8.

PMID:
23027050
19.

Designing and utilization of siRNAs targeting RNA binding proteins.

Kim DH, Behlke M, Rossi JJ.

Methods Mol Biol. 2008;488:367-81. doi: 10.1007/978-1-60327-475-3_24.

PMID:
18982303
20.

RNA interference in mammalian cells by siRNAs modified with morpholino nucleoside analogues.

Zhang N, Tan C, Cai P, Zhang P, Zhao Y, Jiang Y.

Bioorg Med Chem. 2009 Mar 15;17(6):2441-6. doi: 10.1016/j.bmc.2009.02.001. Epub 2009 Feb 8.

PMID:
19233658

Supplemental Content

Support Center