Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Characterization of salt-adapted secreted lignocellulolytic enzymes from the mangrove fungus Pestalotiopsis sp.

Arfi Y, Chevret D, Henrissat B, Berrin JG, Levasseur A, Record E.

Nat Commun. 2013;4:1810. doi: 10.1038/ncomms2850.

PMID:
23651998
2.

The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown.

Levasseur A, Lomascolo A, Chabrol O, Ruiz-Dueñas FJ, Boukhris-Uzan E, Piumi F, Kües U, Ram AF, Murat C, Haon M, Benoit I, Arfi Y, Chevret D, Drula E, Kwon MJ, Gouret P, Lesage-Meessen L, Lombard V, Mariette J, Noirot C, Park J, Patyshakuliyeva A, Sigoillot JC, Wiebenga A, Wösten HA, Martin F, Coutinho PM, de Vries RP, Martínez AT, Klopp C, Pontarotti P, Henrissat B, Record E.

BMC Genomics. 2014 Jun 18;15:486. doi: 10.1186/1471-2164-15-486.

3.

Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels.

Wu W, Davis RW, Tran-Gyamfi MB, Kuo A, LaButti K, Mihaltcheva S, Hundley H, Chovatia M, Lindquist E, Barry K, Grigoriev IV, Henrissat B, Gladden JM.

Appl Microbiol Biotechnol. 2017 Mar;101(6):2603-2618. doi: 10.1007/s00253-017-8091-1. Epub 2017 Jan 12.

PMID:
28078400
4.

Involvement of lignocellulolytic enzymes in the decomposition of leaf litter in a subtropical forest.

Hao JJ, Tian XJ, Song FQ, He XB, Zhang ZJ, Zhang P.

J Eukaryot Microbiol. 2006 May-Jun;53(3):193-8.

PMID:
16677342
5.

Differential production of lignocellulolytic enzymes by a white rot fungus Termitomyces sp. OE147 on cellulose and lactose.

Bashir H, Gangwar R, Mishra S.

Biochim Biophys Acta. 2015 Oct;1854(10 Pt A):1290-9. doi: 10.1016/j.bbapap.2015.07.005. Epub 2015 Jul 9.

PMID:
26164778
6.

Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases.

Huang Y, Busk PK, Lange L.

Enzyme Microb Technol. 2015 Jun;73-74:9-19. doi: 10.1016/j.enzmictec.2015.03.001. Epub 2015 Mar 14.

PMID:
26002499
7.

Proteomic characterization of lignocellulose-degrading enzymes secreted by Phanerochaete carnosa grown on spruce and microcrystalline cellulose.

Mahajan S, Master ER.

Appl Microbiol Biotechnol. 2010 May;86(6):1903-14. doi: 10.1007/s00253-010-2516-4. Epub 2010 Mar 20.

PMID:
20306191
8.

The wood rot ascomycete Xylaria polymorpha produces a novel GH78 glycoside hydrolase that exhibits α-L-rhamnosidase and feruloyl esterase activities and releases hydroxycinnamic acids from lignocelluloses.

Nghi do H, Bittner B, Kellner H, Jehmlich N, Ullrich R, Pecyna MJ, Nousiainen P, Sipilä J, Huong le M, Hofrichter M, Liers C.

Appl Environ Microbiol. 2012 Jul;78(14):4893-901. doi: 10.1128/AEM.07588-11. Epub 2012 Apr 27.

9.

Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era.

Liu G, Qin Y, Li Z, Qu Y.

Biotechnol Adv. 2013 Nov;31(6):962-75. doi: 10.1016/j.biotechadv.2013.03.001. Epub 2013 Mar 15. Review.

PMID:
23507038
10.

Deciphering the salinity adaptation mechanism in Penicilliopsis clavariiformis AP, a rare salt tolerant fungus from mangrove.

Kashyap PL, Rai A, Singh R, Chakdar H, Kumar S, Srivastava AK.

J Basic Microbiol. 2016 Jul;56(7):779-91. doi: 10.1002/jobm.201500552. Epub 2015 Dec 11.

PMID:
26663001
11.

Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6.

Patel I, Kracher D, Ma S, Garajova S, Haon M, Faulds CB, Berrin JG, Ludwig R, Record E.

Biotechnol Biofuels. 2016 May 20;9:108. doi: 10.1186/s13068-016-0520-3. eCollection 2016.

12.

Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation.

Adav SS, Chao LT, Sze SK.

Mol Cell Proteomics. 2012 Jul;11(7):M111.012419. doi: 10.1074/mcp.M111.012419. Epub 2012 Feb 20.

13.

Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.

Zhu Z, Chen J, Zheng HL.

Tree Physiol. 2012 Nov;32(11):1378-88. doi: 10.1093/treephys/tps097. Epub 2012 Oct 25.

PMID:
23100256
14.

Secretome of the Coprophilous Fungus Doratomyces stemonitis C8, Isolated from Koala Feces.

Peterson R, Grinyer J, Nevalainen H.

Appl Environ Microbiol. 2011 Jun;77(11):3793-801. doi: 10.1128/AEM.00252-11. Epub 2011 Apr 15.

15.

Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion.

Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Bondurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavín JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D.

Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1954-9. doi: 10.1073/pnas.0809575106. Epub 2009 Feb 4.

16.

The first genome-level transcriptome of the wood-degrading fungus Phanerochaete chrysosporium grown on red oak.

Sato S, Feltus FA, Iyer P, Tien M.

Curr Genet. 2009 Jun;55(3):273-86. doi: 10.1007/s00294-009-0243-0. Epub 2009 Apr 26.

PMID:
19396602
17.

Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78.

Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D.

Nat Biotechnol. 2004 Jun;22(6):695-700. Epub 2004 May 2. Erratum in: Nat Biotechnol. 2004 Jul;22(7):899.

PMID:
15122302
18.

Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil.

Kellner H, Zak DR, Vandenbol M.

PLoS One. 2010 Jun 4;5(6):e10971. doi: 10.1371/journal.pone.0010971. Erratum in: PLoS One. 2010;5(9). doi: 10.1371/annotation/84b7b537-84f6-49e6-ac7c-9a2f0ad3f862. Zak, Donald R [added].

19.

Diatrypasimilis australiensis, a novel xylarialean fungus from mangrove.

Chalkley DB, Suh SO, Volkmann-Kohlmeyer B, Kohlmeyer J, Zhou JJ.

Mycologia. 2010 Mar-Apr;102(2):430-7.

PMID:
20361509
20.

Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis.

Couturier M, Navarro D, Olivé C, Chevret D, Haon M, Favel A, Lesage-Meessen L, Henrissat B, Coutinho PM, Berrin JG.

BMC Genomics. 2012 Feb 2;13:57. doi: 10.1186/1471-2164-13-57.

Supplemental Content

Support Center