Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 153

1.

Sustained delivery of bioactive TGF-β1 from self-assembling peptide hydrogels induces chondrogenesis of encapsulated bone marrow stromal cells.

Kopesky PW, Byun S, Vanderploeg EJ, Kisiday JD, Frisbie DD, Grodzinsky AJ.

J Biomed Mater Res A. 2014 May;102(5):1275-85. doi: 10.1002/jbm.a.34789. Epub 2013 Jun 4.

2.

Controlled delivery of transforming growth factor β1 by self-assembling peptide hydrogels induces chondrogenesis of bone marrow stromal cells and modulates Smad2/3 signaling.

Kopesky PW, Vanderploeg EJ, Kisiday JD, Frisbie DD, Sandy JD, Grodzinsky AJ.

Tissue Eng Part A. 2011 Jan;17(1-2):83-92. doi: 10.1089/ten.TEA.2010.0198. Epub 2010 Sep 22.

3.

Self-assembling peptide hydrogels modulate in vitro chondrogenesis of bovine bone marrow stromal cells.

Kopesky PW, Vanderploeg EJ, Sandy JS, Kurz B, Grodzinsky AJ.

Tissue Eng Part A. 2010 Feb;16(2):465-77. doi: 10.1089/ten.TEA.2009.0158.

4.

Controlled Dual Growth Factor Delivery From Microparticles Incorporated Within Human Bone Marrow-Derived Mesenchymal Stem Cell Aggregates for Enhanced Bone Tissue Engineering via Endochondral Ossification.

Dang PN, Dwivedi N, Phillips LM, Yu X, Herberg S, Bowerman C, Solorio LD, Murphy WL, Alsberg E.

Stem Cells Transl Med. 2016 Feb;5(2):206-17. doi: 10.5966/sctm.2015-0115. Epub 2015 Dec 23.

5.

Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair.

Miller RE, Grodzinsky AJ, Vanderploeg EJ, Lee C, Ferris DJ, Barrett MF, Kisiday JD, Frisbie DD.

Osteoarthritis Cartilage. 2010 Dec;18(12):1608-19. doi: 10.1016/j.joca.2010.09.004. Epub 2010 Sep 17.

6.

Temporal exposure to chondrogenic factors modulates human mesenchymal stem cell chondrogenesis in hydrogels.

Buxton AN, Bahney CS, Yoo JU, Johnstone B.

Tissue Eng Part A. 2011 Feb;17(3-4):371-80. doi: 10.1089/ten.TEA.2009.0839. Epub 2010 Oct 25.

7.

Growth factor delivery through self-assembling peptide scaffolds.

Miller RE, Kopesky PW, Grodzinsky AJ.

Clin Orthop Relat Res. 2011 Oct;469(10):2716-24. doi: 10.1007/s11999-011-1891-1.

8.

Transforming growth factor-beta1 promotes articular cartilage repair through canonical Smad and Hippo pathways in bone mesenchymal stem cells.

Ying J, Wang P, Zhang S, Xu T, Zhang L, Dong R, Xu S, Tong P, Wu C, Jin H.

Life Sci. 2018 Jan 1;192:84-90. doi: 10.1016/j.lfs.2017.11.028. Epub 2017 Nov 20.

PMID:
29158053
9.

Chondrogenic differentiation of ChM-I gene transfected rat bone marrow-derived mesenchymal stem cells on 3-dimensional poly (L-lactic acid) scaffold for cartilage engineering.

Xing SC, Liu Y, Feng Y, Jiang C, Hu YQ, Sun W, Wang XH, Wei ZY, Qi M, Liu J, Zhai LJ, Wang ZQ.

Cell Biol Int. 2015 Mar;39(3):300-9. doi: 10.1002/cbin.10393. Epub 2014 Dec 17.

PMID:
25319137
10.

Chondrogenic differentiation of bone marrow-derived mesenchymal stromal cells via biomimetic and bioactive poly-ε-caprolactone scaffolds.

Schagemann JC, Paul S, Casper ME, Rohwedel J, Kramer J, Kaps C, Mittelstaedt H, Fehr M, Reinholz GG.

J Biomed Mater Res A. 2013 Jun;101(6):1620-8. doi: 10.1002/jbm.a.34457. Epub 2012 Nov 27.

PMID:
23184542
11.

A growth factor delivery system for chondrogenic induction of infrapatellar fat pad-derived stem cells in fibrin hydrogels.

Ahearne M, Buckley CT, Kelly DJ.

Biotechnol Appl Biochem. 2011 Sep-Oct;58(5):345-52. doi: 10.1002/bab.45. Epub 2011 Sep 23.

PMID:
21995537
12.

Repairing cartilage defects with bone marrow mesenchymal stem cells induced by CDMP and TGF-β1.

Wu G, Cui Y, Ma L, Pan X, Wang X, Zhang B.

Cell Tissue Bank. 2014 Mar;15(1):51-7. doi: 10.1007/s10561-013-9369-x. Epub 2013 Mar 5.

PMID:
23460257
13.

Effective and durable genetic modification of human mesenchymal stem cells via controlled release of rAAV vectors from self-assembling peptide hydrogels with a maintained differentiation potency.

Rey-Rico A, Venkatesan JK, Frisch J, Schmitt G, Monge-Marcet A, Lopez-Chicon P, Mata A, Semino C, Madry H, Cucchiarini M.

Acta Biomater. 2015 May;18:118-27. doi: 10.1016/j.actbio.2015.02.013. Epub 2015 Feb 21.

PMID:
25712390
14.

Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures.

Kisiday JD, Kopesky PW, Evans CH, Grodzinsky AJ, McIlwraith CW, Frisbie DD.

J Orthop Res. 2008 Mar;26(3):322-31.

15.

TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells.

Murphy MK, Huey DJ, Hu JC, Athanasiou KA.

Stem Cells. 2015 Mar;33(3):762-73. doi: 10.1002/stem.1890.

17.

Spatiotemporal regulation of chondrogenic differentiation with controlled delivery of transforming growth factor-β1 from gelatin microspheres in mesenchymal stem cell aggregates.

Solorio LD, Dhami CD, Dang PN, Vieregge EL, Alsberg E.

Stem Cells Transl Med. 2012 Aug;1(8):632-9. doi: 10.5966/sctm.2012-0039. Epub 2012 Jul 27.

18.

The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation.

Thorpe SD, Buckley CT, Vinardell T, O'Brien FJ, Campbell VA, Kelly DJ.

Ann Biomed Eng. 2010 Sep;38(9):2896-909. doi: 10.1007/s10439-010-0059-6. Epub 2010 May 11.

PMID:
20458627
20.

Transient exposure to TGF-β3 improves the functional chondrogenesis of MSC-laden hyaluronic acid hydrogels.

Kim M, Erickson IE, Choudhury M, Pleshko N, Mauck RL.

J Mech Behav Biomed Mater. 2012 Jul;11:92-101. doi: 10.1016/j.jmbbm.2012.03.006. Epub 2012 Mar 24.

Supplemental Content

Support Center