Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Tertiary structure of bacterial selenocysteine tRNA.

Itoh Y, Sekine S, Suetsugu S, Yokoyama S.

Nucleic Acids Res. 2013 Jul;41(13):6729-38. doi: 10.1093/nar/gkt321. Epub 2013 May 6.

2.

Crystallization and preliminary X-ray crystallographic analysis of bacterial tRNA(Sec) in complex with seryl-tRNA synthetase.

Itoh Y, Sekine SI, Yokoyama S.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Jun 1;68(Pt 6):678-82. doi: 10.1107/S1744309112016004. Epub 2012 May 23.

3.

Crystallographic and mutational studies of seryl-tRNA synthetase from the archaeon Pyrococcus horikoshii.

Itoh Y, Sekine S, Kuroishi C, Terada T, Shirouzu M, Kuramitsu S, Yokoyama S.

RNA Biol. 2008 Jul-Sep;5(3):169-77. Epub 2008 Jul 28.

PMID:
18818520
4.

SerRS-tRNASec complex structures reveal mechanism of the first step in selenocysteine biosynthesis.

Wang C, Guo Y, Tian Q, Jia Q, Gao Y, Zhang Q, Zhou C, Xie W.

Nucleic Acids Res. 2015 Dec 2;43(21):10534-45. doi: 10.1093/nar/gkv996. Epub 2015 Oct 3.

5.

Solution structure of selenocysteine-inserting tRNA(Sec) from Escherichia coli. Comparison with canonical tRNA(Ser).

Baron C, Westhof E, Böck A, Giegé R.

J Mol Biol. 1993 May 20;231(2):274-92.

PMID:
8510147
6.

Structural basis for the major role of O-phosphoseryl-tRNA kinase in the UGA-specific encoding of selenocysteine.

Chiba S, Itoh Y, Sekine S, Yokoyama S.

Mol Cell. 2010 Aug 13;39(3):410-20. doi: 10.1016/j.molcel.2010.07.018.

7.
8.
10.

Dynamics of the Active Sites of Dimeric Seryl tRNA Synthetase from Methanopyrus kandleri.

Dutta S, Nandi N.

J Phys Chem B. 2015 Aug 27;119(34):10832-48. doi: 10.1021/jp511585w. Epub 2015 Apr 6.

PMID:
25794108
11.

The dual identities of mammalian tRNA(Sec) for SerRS and selenocysteine synthase.

Mizutani T, Kanaya K, Ikeda S, Fujiwara T, Yamada K, Totsuka T.

Mol Biol Rep. 1998 Nov;25(4):211-6.

PMID:
9870610
12.

Crystal structure of human selenocysteine tRNA.

Itoh Y, Chiba S, Sekine S, Yokoyama S.

Nucleic Acids Res. 2009 Oct;37(18):6259-68. doi: 10.1093/nar/gkp648. Epub 2009 Aug 19.

13.

Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec).

Amberg R, Mizutani T, Wu XQ, Gross HJ.

J Mol Biol. 1996 Oct 18;263(1):8-19.

PMID:
8890909
14.

The 2.9 A crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser).

Biou V, Yaremchuk A, Tukalo M, Cusack S.

Science. 1994 Mar 11;263(5152):1404-10.

PMID:
8128220
15.

Seryl-tRNA synthetase from Escherichia coli: functional evidence for cross-dimer tRNA binding during aminoacylation.

Vincent C, Borel F, Willison JC, Leberman R, Härtlein M.

Nucleic Acids Res. 1995 Apr 11;23(7):1113-8.

16.

Seryl-tRNA synthetase from Escherichia coli: implication of its N-terminal domain in aminoacylation activity and specificity.

Borel F, Vincent C, Leberman R, Härtlein M.

Nucleic Acids Res. 1994 Aug 11;22(15):2963-9. Erratum in: Nucleic Acids Res 1994 Oct 25;22(21):4552.

18.

Characterization and tRNA recognition of mammalian mitochondrial seryl-tRNA synthetase.

Yokogawa T, Shimada N, Takeuchi N, Benkowski L, Suzuki T, Omori A, Ueda T, Nishikawa K, Spremulli LL, Watanabe K.

J Biol Chem. 2000 Jun 30;275(26):19913-20.

19.

The long D-stem of the selenocysteine tRNA provides resilience at the expense of maximal function.

Ishii TM, Kotlova N, Tapsoba F, Steinberg SV.

J Biol Chem. 2013 May 10;288(19):13337-44. doi: 10.1074/jbc.M112.434704. Epub 2013 Mar 22.

20.

Selenocysteine inserting tRNAs: an overview.

Commans S, Böck A.

FEMS Microbiol Rev. 1999 Jun;23(3):335-51. Review.

Supplemental Content

Support Center