Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 137

1.

Enterococcus faecalis infection causes inflammation, intracellular oxphos-independent ROS production, and DNA damage in human gastric cancer cells.

Strickertsson JA, Desler C, Martin-Bertelsen T, Machado AM, Wadstrøm T, Winther O, Rasmussen LJ, Friis-Hansen L.

PLoS One. 2013 Apr 30;8(4):e63147. doi: 10.1371/journal.pone.0063147. Print 2013.

2.

Enterococcus faecalis Infection and Reactive Oxygen Species Down-Regulates the miR-17-92 Cluster in Gastric Adenocarcinoma Cell Culture.

Strickertsson JA, Rasmussen LJ, Friis-Hansen L.

Genes (Basel). 2014 Aug 28;5(3):726-38. doi: 10.3390/genes5030726.

3.

Gene expression profiling in human gastric mucosa infected with Helicobacter pylori.

Hofman VJ, Moreilhon C, Brest PD, Lassalle S, Le Brigand K, Sicard D, Raymond J, Lamarque D, Hébuterne XA, Mari B, Barbry PJ, Hofman PM.

Mod Pathol. 2007 Sep;20(9):974-89. Epub 2007 Jul 20.

4.

Review article: the role of inflammation in the pathogenesis of gastric cancer.

Ernst P.

Aliment Pharmacol Ther. 1999 Mar;13 Suppl 1:13-8. Review.

6.

Difference of p53AIP1 mRNA expression in gastric mucosa between patients with gastric cancer and chronic gastritis infected with Helicobacter pylori.

Sawaya M, Yoshimura T, Shimoyama T, Munakata A, Fukuda S.

J Clin Gastroenterol. 2008 Apr;42(4):351-5. doi: 10.1097/MCG.0b013e318054493e.

PMID:
18277906
7.

Danthron, an anthraquinone derivative, induces DNA damage and caspase cascades-mediated apoptosis in SNU-1 human gastric cancer cells through mitochondrial permeability transition pores and Bax-triggered pathways.

Chiang JH, Yang JS, Ma CY, Yang MD, Huang HY, Hsia TC, Kuo HM, Wu PP, Lee TH, Chung JG.

Chem Res Toxicol. 2011 Jan 14;24(1):20-9. doi: 10.1021/tx100248s. Epub 2010 Dec 2.

PMID:
21126053
8.

Tumor necrosis factor-alpha-induced cytokine-induced neutrophil chemoattractant-1 (CINC-1) production by rat gastric epithelial cells: role of reactive oxygen species and nuclear factor-kappaB.

Handa O, Naito Y, Takagi T, Shimozawa M, Kokura S, Yoshida N, Matsui H, Cepinskas G, Kvietys PR, Yoshikawa T.

J Pharmacol Exp Ther. 2004 May;309(2):670-6. Epub 2004 Jan 27.

9.

[Analysis of gene expression profiles in gastric cancer cell cycle].

Lan B, Liu BY, Cheng XH, Zhang J, Wang KK, Zhu ZG.

Zhonghua Zhong Liu Za Zhi. 2006 Aug;28(8):568-71. Chinese.

PMID:
17236548
10.

Hypermethylation downregulates Runx3 gene expression and its restoration suppresses gastric epithelial cell growth by inducing p27 and caspase3 in human gastric cancer.

Chen W, Gao N, Shen Y, Cen JN.

J Gastroenterol Hepatol. 2010 Apr;25(4):823-31. doi: 10.1111/j.1440-1746.2009.06191.x.

PMID:
20492341
11.

The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.

Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E, Moreno-Sánchez R.

Mol Aspects Med. 2010 Apr;31(2):145-70. doi: 10.1016/j.mam.2010.02.008. Epub 2010 Mar 2. Review.

PMID:
20206201
12.

Helicobacter pylori induces promoter methylation of E-cadherin via interleukin-1β activation of nitric oxide production in gastric cancer cells.

Huang FY, Chan AO, Rashid A, Wong DK, Cho CH, Yuen MF.

Cancer. 2012 Oct 15;118(20):4969-80. doi: 10.1002/cncr.27519. Epub 2012 Mar 13.

13.

Reduced microRNA-218 expression is associated with high nuclear factor kappa B activation in gastric cancer.

Gao C, Zhang Z, Liu W, Xiao S, Gu W, Lu H.

Cancer. 2010 Jan 1;116(1):41-9. doi: 10.1002/cncr.24743.

14.

Activation of TLR4 signaling promotes gastric cancer progression by inducing mitochondrial ROS production.

Yuan X, Zhou Y, Wang W, Li J, Xie G, Zhao Y, Xu D, Shen L.

Cell Death Dis. 2013 Sep 12;4:e794. doi: 10.1038/cddis.2013.334.

15.

Changes in the gene expression profile of gastric cancer cells in response to ibuprofen: a gene pathway analysis.

Bonelli P, Tuccillo FM, Calemma R, Pezzetti F, Borrelli A, Martinelli R, De Rosa A, Esposito D, Palaia R, Castello G.

Pharmacogenomics J. 2011 Dec;11(6):412-28. doi: 10.1038/tpj.2010.55. Epub 2010 Jun 15.

PMID:
20548326
16.

Free radicals, metals and antioxidants in oxidative stress-induced cancer.

Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M.

Chem Biol Interact. 2006 Mar 10;160(1):1-40. Epub 2006 Jan 23. Review.

PMID:
16430879
18.

Mechanism of gastroprotection by bismuth subsalicylate against chemically induced oxidative stress in cultured human gastric mucosal cells.

Bagchi D, McGinn TR, Ye X, Balmoori J, Bagchi M, Stohs SJ, Kuszynski CA, Carryl OR, Mitra S.

Dig Dis Sci. 1999 Dec;44(12):2419-28.

PMID:
10630491
19.

Benzyl isothiocyanate (BITC) induces G2/M phase arrest and apoptosis in human melanoma A375.S2 cells through reactive oxygen species (ROS) and both mitochondria-dependent and death receptor-mediated multiple signaling pathways.

Huang SH, Wu LW, Huang AC, Yu CC, Lien JC, Huang YP, Yang JS, Yang JH, Hsiao YP, Wood WG, Yu CS, Chung JG.

J Agric Food Chem. 2012 Jan 18;60(2):665-75. doi: 10.1021/jf204193v. Epub 2012 Jan 6.

PMID:
22148415
20.

Mitochondrial DNA damage and altered membrane potential (delta psi) in pancreatic acinar cells induced by reactive oxygen species.

Ehlers RA, Hernandez A, Bloemendal LS, Ethridge RT, Farrow B, Evers BM.

Surgery. 1999 Aug;126(2):148-55.

PMID:
10455877

Supplemental Content

Support Center