Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils.

Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M.

Soil Biol Biochem. 2013 May;60(100):182-194.

2.

The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.

Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H.

J Environ Manage. 2015 Jun 1;156:62-9. doi: 10.1016/j.jenvman.2015.03.024. Epub 2015 Mar 19.

PMID:
25796039
3.

Selenite resistant rhizobacteria stimulate SeO(3) (2-) phytoextraction by Brassica juncea in bioaugmented water-filtering artificial beds.

Lampis S, Ferrari A, Cunha-Queda AC, Alvarenga P, Di Gregorio S, Vallini G.

Environ Sci Pollut Res Int. 2009 Sep;16(6):663-70. doi: 10.1007/s11356-008-0088-y. Epub 2008 Dec 23.

PMID:
19104867
4.

Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica.

Mesa V, Navazas A, González-Gil R, González A, Weyens N, Lauga B, Gallego JL, Sánchez J, Peláez AI.

Appl Environ Microbiol. 2017 Mar 31;83(8). pii: e03411-16. doi: 10.1128/AEM.03411-16. Print 2017 Apr 15.

PMID:
28188207
5.
6.

Bacteria associated with yellow lupine grown on a metal-contaminated soil: in vitro screening and in vivo evaluation for their potential to enhance Cd phytoextraction.

Weyens N, Gielen M, Beckers B, Boulet J, van der Lelie D, Taghavi S, Carleer R, Vangronsveld J.

Plant Biol (Stuttg). 2014 Sep;16(5):988-96. doi: 10.1111/plb.12141. Epub 2014 Jan 8.

PMID:
24400887
7.

Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals.

Rajkumar M, Vara Prasad MN, Freitas H, Ae N.

Crit Rev Biotechnol. 2009;29(2):120-30. doi: 10.1080/07388550902913772. Review.

PMID:
19514893
8.

EDTA-assisted Pb phytoextraction.

Saifullah, Meers E, Qadir M, de Caritat P, Tack FM, Du Laing G, Zia MH.

Chemosphere. 2009 Mar;74(10):1279-91. doi: 10.1016/j.chemosphere.2008.11.007. Epub 2009 Jan 1. Review.

PMID:
19121533
9.
10.

The fate of arsenic in soil-plant systems.

Moreno-Jiménez E, Esteban E, Peñalosa JM.

Rev Environ Contam Toxicol. 2012;215:1-37. doi: 10.1007/978-1-4614-1463-6_1. Review.

PMID:
22057929
11.

Using hyperaccumulator plants to phytoextract soil Ni and Cd.

Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJ.

Z Naturforsch C. 2005 Mar-Apr;60(3-4):190-8. Review.

PMID:
15948583
12.

Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil.

Hassan SE, Hijri M, St-Arnaud M.

N Biotechnol. 2013 Sep 25;30(6):780-7. doi: 10.1016/j.nbt.2013.07.002. Epub 2013 Jul 20.

PMID:
23876814
13.

Interactions between accumulation of trace elements and macronutrients in Salix caprea after inoculation with rhizosphere microorganisms.

De Maria S, Rivelli AR, Kuffner M, Sessitsch A, Wenzel WW, Gorfer M, Strauss J, Puschenreiter M.

Chemosphere. 2011 Aug;84(9):1256-61. doi: 10.1016/j.chemosphere.2011.05.002. Epub 2011 May 25.

14.

The use of transgenic plants in the bioremediation of soils contaminated with trace elements.

Krämer U, Chardonnens AN.

Appl Microbiol Biotechnol. 2001 Jun;55(6):661-72. Review.

PMID:
11525612
15.

Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.

Tak HI, Ahmad F, Babalola OO.

Rev Environ Contam Toxicol. 2013;223:33-52. doi: 10.1007/978-1-4614-5577-6_2. Review.

PMID:
23149811
16.

Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity.

Manousaki E, Kalogerakis N.

Environ Sci Pollut Res Int. 2009 Nov;16(7):844-54. doi: 10.1007/s11356-009-0224-3. Epub 2009 Jul 14.

PMID:
19597858
17.

Phytoextraction of copper from contaminated soil by Elsholtzia splendens as affected by EDTA, citric acid, and compost.

Yang XE, Peng HY, Jiang LY, He ZL.

Int J Phytoremediation. 2005;7(1):69-83.

PMID:
15943245
18.

Growth of Populus alba and its influence on soil trace element availability.

Ciadamidaro L, Madejón E, Puschenreiter M, Madejón P.

Sci Total Environ. 2013 Jun 1;454-455:337-47. doi: 10.1016/j.scitotenv.2013.03.032. Epub 2013 Apr 2.

PMID:
23562686
19.

Plant treatment, pollutant load, and soil type effects in rhizosphere ecology of trace element polluted soils.

Belén Hinojosa M, Carreira JA, García-Ruíz R, Rodríguez-Maroto JM, Daniell TJ, Griffiths BS.

Ecotoxicol Environ Saf. 2010 Jul;73(5):970-81. doi: 10.1016/j.ecoenv.2010.01.013. Epub 2010 Apr 10.

PMID:
20385407
20.

Supplemental Content

Support Center