Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Selective detection and automated counting of fluorescently-labeled chrysotile asbestos using a dual-mode high-throughput microscopy (DM-HTM) method.

Cho MO, Chang HM, Lee D, Yu YG, Han H, Kim JK.

Sensors (Basel). 2013 May 2;13(5):5686-99. doi: 10.3390/s130505686.

2.

Liquid-phase sample preparation method for real-time monitoring of airborne asbestos fibers by dual-mode high-throughput microscopy.

Cho MO, Kim JK, Han H, Lee J.

Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5517-20. doi: 10.1109/EMBC.2013.6610799.

PMID:
24110986
3.

Automated counting of airborne asbestos fibers by a high-throughput microscopy (HTM) method.

Cho MO, Yoon S, Han H, Kim JK.

Sensors (Basel). 2011;11(7):7231-42. doi: 10.3390/s110707231. Epub 2011 Jul 18.

4.

Differential Counting of Asbestos Using Phase Contrast and Fluorescence Microscopy.

Nishimura T, Alexandrov M, Ishida T, Hirota R, Ikeda T, Sekiguchi K, Kuroda A.

Ann Occup Hyg. 2016 Nov;60(9):1104-1115. doi: 10.1093/annhyg/mew055. Epub 2016 Sep 26.

PMID:
27671738
5.

Evaluation of the dark-medium objective lens in counting asbestos fibers by phase-contrast microscopy.

Lee EG, Nelson JH, Kashon ML, Harper M.

Ann Occup Hyg. 2015 Jun;59(5):616-28. doi: 10.1093/annhyg/mev007. Epub 2015 Mar 3.

6.

Selective detection of airborne asbestos fibers using protein-based fluorescent probes.

Ishida T, Alexandrov M, Nishimura T, Minakawa K, Hirota R, Sekiguchi K, Kohyama N, Kuroda A.

Environ Sci Technol. 2010 Jan 15;44(2):755-9. doi: 10.1021/es902395h.

PMID:
20000675
7.

Evaluation of sensitivity of fluorescence-based asbestos detection by correlative microscopy.

Ishida T, Alexandrov M, Nishimura T, Minakawa K, Hirota R, Sekiguchi K, Kohyama N, Kuroda A.

J Fluoresc. 2012 Jan;22(1):357-63. doi: 10.1007/s10895-011-0967-3. Epub 2011 Sep 21.

PMID:
21932006
8.
9.
10.

A study of airborne chrysotile concentrations associated with handling, unpacking, and repacking boxes of automobile clutch discs.

Jiang GC, Madl AK, Ingmundson KJ, Murbach DM, Fehling KA, Paustenbach DJ, Finley BL.

Regul Toxicol Pharmacol. 2008 Jun;51(1):87-97. doi: 10.1016/j.yrtph.2008.02.009. Epub 2008 Mar 18.

PMID:
18440685
11.

Update of potency factors for asbestos-related lung cancer and mesothelioma.

Berman DW, Crump KS.

Crit Rev Toxicol. 2008;38 Suppl 1:1-47. doi: 10.1080/10408440802276167.

PMID:
18671157
12.

Chamber for testing asbestos-containing products: validation and testing of a re-created chrysotile-containing joint compound.

Sheehan PJ, Brorby GP, Berman DW, Bogen KT, Holm SE.

Ann Occup Hyg. 2011 Aug;55(7):797-809. doi: 10.1093/annhyg/mer048. Epub 2011 Jul 26.

PMID:
21795244
13.

Identification and counting of asbestos fibers.

Taylor DG, Baron PA, Shulman SA, Carter JW.

Am Ind Hyg Assoc J. 1984 Feb;45(2):84-8.

PMID:
6367412
16.

A meta-analysis of asbestos-related cancer risk that addresses fiber size and mineral type.

Berman DW, Crump KS.

Crit Rev Toxicol. 2008;38 Suppl 1:49-73. doi: 10.1080/10408440802273156.

PMID:
18686078
17.

Physical and microchemical alterations of chrysotile and amosite asbestos in the hamster lung.

Kimizuka G, Wang NS, Hayashi Y.

J Toxicol Environ Health. 1987;21(3):251-64.

PMID:
3586060
18.

Simulation tests to assess occupational exposure to airborne asbestos from artificially weathered asphalt-based roofing products.

Sheehan P, Mowat F, Weidling R, Floyd M.

Ann Occup Hyg. 2010 Nov;54(8):880-92. doi: 10.1093/annhyg/meq058. Epub 2010 Oct 5. Erratum in: Ann Occup Hyg. 2011 Aug;55(7):827.

PMID:
20923966
19.

The biopersistence of brazilian chrysotile asbestos following inhalation.

Bernstein DM, Rogers R, Smith P.

Inhal Toxicol. 2004 Oct-Nov;16(11-12):745-61.

PMID:
16036745
20.

The quality of fiber counts using improved slides with relocatable fields.

Pang TW, Harper M.

J Environ Monit. 2008 Jan;10(1):89-95. doi: 10.1039/b712323j. Epub 2007 Oct 31.

PMID:
18175021

Supplemental Content

Support Center