Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 53

1.

Top-down network analysis to drive bottom-up modeling of physiological processes.

Poirel CL, Rodrigues RR, Chen KC, Tyson JJ, Murali TM.

J Comput Biol. 2013 May;20(5):409-18. doi: 10.1089/cmb.2012.0274.

2.

Dynamic modeling of yeast meiotic initiation.

Ray D, Su Y, Ye P.

BMC Syst Biol. 2013 May 1;7:37. doi: 10.1186/1752-0509-7-37.

3.

Computer evaluation of network dynamics models with application to cell cycle control in budding yeast.

Allen NA, Chen KC, Shaffer CA, Tyson JJ, Watson LT.

Syst Biol (Stevenage). 2006 Jan;153(1):13-21.

PMID:
16983831
4.

Modelling the network of cell cycle transcription factors in the yeast Saccharomyces cerevisiae.

Cokus S, Rose S, Haynor D, Grønbech-Jensen N, Pellegrini M.

BMC Bioinformatics. 2006 Aug 16;7:381.

6.
7.

Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle.

Gibbs DL, Shmulevich I.

PLoS Comput Biol. 2017 Jun 19;13(6):e1005591. doi: 10.1371/journal.pcbi.1005591. eCollection 2017 Jun. Erratum in: PLoS Comput Biol. 2018 May 23;14(5):e1006190.

8.

Cell cycle phosphorylation of mitotic exit network (MEN) proteins.

Jones MH, Keck JM, Wong CC, Xu T, Yates JR 3rd, Winey M.

Cell Cycle. 2011 Oct 15;10(20):3435-40. doi: 10.4161/cc.10.20.17790. Epub 2011 Oct 15.

9.

The FEAR Before MEN: networks of mitotic exit.

Dumitrescu TP, Saunders WS.

Cell Cycle. 2002 Sep-Oct;1(5):304-7. Review.

PMID:
12461288
10.

Mitotic exit control: a space and time odyssey.

Segal M.

Curr Biol. 2011 Oct 25;21(20):R857-9. doi: 10.1016/j.cub.2011.09.023. Review.

11.

Representing perturbed dynamics in biological network models.

Stoll G, Rougemont J, Naef F.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011917. Epub 2007 Jul 25.

PMID:
17677504
12.

Few crucial links assure checkpoint efficiency in the yeast cell-cycle network.

Stoll G, Rougemont J, Naef F.

Bioinformatics. 2006 Oct 15;22(20):2539-46. Epub 2006 Aug 7.

PMID:
16895923
13.

Centrosome duplication: suspending a license by phosphorylating a template.

Tanaka K.

Curr Biol. 2014 Jul 21;24(14):R651-R653. doi: 10.1016/j.cub.2014.06.008.

14.

A novel role for the alcohol sensitive ring/PHD finger protein Asr1p in regulating cell cycle mediated by septin-dependent assembly in yeast.

Zou W, Yan J, Zhao N, Niu S, Huang X.

Biochem Biophys Res Commun. 2015 Feb 27;458(1):208-13. doi: 10.1016/j.bbrc.2015.01.113. Epub 2015 Jan 31.

PMID:
25646695
15.

Control of the mitotic exit network during meiosis.

Attner MA, Amon A.

Mol Biol Cell. 2012 Aug;23(16):3122-32. doi: 10.1091/mbc.E12-03-0235. Epub 2012 Jun 20.

16.

Robustness and adaptation reveal plausible cell cycle controlling subnetwork in Saccharomyces cerevisiae.

Huang JY, Huang CW, Kao KC, Lai PY.

Gene. 2013 Apr 10;518(1):35-41. doi: 10.1016/j.gene.2012.11.088. Epub 2012 Dec 27.

PMID:
23274654
17.

Protein kinase Cdc15 activates the Dbf2-Mob1 kinase complex.

Mah AS, Jang J, Deshaies RJ.

Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7325-30. Epub 2001 Jun 12.

18.

Cell size at S phase initiation: an emergent property of the G1/S network.

Barberis M, Klipp E, Vanoni M, Alberghina L.

PLoS Comput Biol. 2007 Apr 13;3(4):e64. Epub 2007 Feb 21.

19.

Statistical methods for identifying yeast cell cycle transcription factors.

Tsai HK, Lu HH, Li WH.

Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13532-7. Epub 2005 Sep 12.

20.

Mathematical modeling of complex regulatory networks.

Stelling J, Gilles ED.

IEEE Trans Nanobioscience. 2004 Sep;3(3):172-9.

PMID:
15473069

Supplemental Content

Support Center