Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 82

1.

A microfluidic system for cell type classification based on cellular size-independent electrical properties.

Zhao Y, Chen D, Luo Y, Li H, Deng B, Huang SB, Chiu TK, Wu MH, Long R, Hu H, Zhao X, Yue W, Wang J, Chen J.

Lab Chip. 2013 Jun 21;13(12):2272-7. doi: 10.1039/c3lc41361f. Epub 2013 May 3.

PMID:
23640025
2.

A microfluidic system enabling continuous characterization of specific membrane capacitance and cytoplasm conductivity of single cells in suspension.

Zhao Y, Chen D, Li H, Luo Y, Deng B, Huang SB, Chiu TK, Wu MH, Long R, Hu H, Wang J, Chen J.

Biosens Bioelectron. 2013 May 15;43:304-7. doi: 10.1016/j.bios.2012.12.035. Epub 2012 Dec 26.

PMID:
23337259
3.

Tumor cell characterization and classification based on cellular specific membrane capacitance and cytoplasm conductivity.

Zhao Y, Zhao XT, Chen DY, Luo YN, Jiang M, Wei C, Long R, Yue WT, Wang JB, Chen J.

Biosens Bioelectron. 2014 Jul 15;57:245-53. doi: 10.1016/j.bios.2014.02.026. Epub 2014 Feb 20.

PMID:
24594591
4.

Microfluidic characterization of specific membrane capacitance and cytoplasm conductivity of single cells.

Zheng Y, Shojaei-Baghini E, Wang C, Sun Y.

Biosens Bioelectron. 2013 Apr 15;42:496-502. doi: 10.1016/j.bios.2012.10.081. Epub 2012 Nov 2.

PMID:
23246657
5.

Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells.

Chen J, Zheng Y, Tan Q, Shojaei-Baghini E, Zhang YL, Li J, Prasad P, You L, Wu XY, Sun Y.

Lab Chip. 2011 Sep 21;11(18):3174-81. doi: 10.1039/c1lc20473d. Epub 2011 Aug 8.

PMID:
21826361
6.

Simultaneous characterization of instantaneous Young's modulus and specific membrane capacitance of single cells using a microfluidic system.

Zhao Y, Chen D, Luo Y, Chen F, Zhao X, Jiang M, Yue W, Long R, Wang J, Chen J.

Sensors (Basel). 2015 Jan 27;15(2):2763-73. doi: 10.3390/s150202763.

7.

Specific membrane capacitance, cytoplasm conductivity and instantaneous Young's modulus of single tumour cells.

Wang K, Zhao Y, Chen D, Fan B, Lu Y, Chen L, Long R, Wang J, Chen J.

Sci Data. 2017 Feb 14;4:170015. doi: 10.1038/sdata.2017.15.

8.
9.

Microfluidic device for cell capture and impedance measurement.

Jang LS, Wang MH.

Biomed Microdevices. 2007 Oct;9(5):737-43.

PMID:
17508285
10.

The Instrumentation of a Microfluidic Analyzer Enabling the Characterization of the Specific Membrane Capacitance, Cytoplasm Conductivity, and Instantaneous Young's Modulus of Single Cells.

Wang K, Zhao Y, Chen D, Huang C, Fan B, Long R, Hsieh CH, Wang J, Wu MH, Chen J.

Int J Mol Sci. 2017 Jun 19;18(6). pii: E1158. doi: 10.3390/ijms18061158.

11.

Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.

Mamouni J, Yang L.

Biomed Microdevices. 2011 Dec;13(6):1075-88. doi: 10.1007/s10544-011-9577-8.

PMID:
21833766
12.

Label-free, high-throughput, electrical detection of cells in droplets.

Kemna EW, Segerink LI, Wolbers F, Vermes I, van den Berg A.

Analyst. 2013 Aug 21;138(16):4585-92. doi: 10.1039/c3an00569k. Epub 2013 Jun 10.

PMID:
23748871
13.

Electrokinetic measurements of dielectric properties of membrane for apoptotic HL-60 cells on chip-based device.

Huang C, Chen A, Wang L, Guo M, Yu J.

Biomed Microdevices. 2007 Jun;9(3):335-43.

PMID:
17195946
14.

Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation.

Cheung K, Gawad S, Renaud P.

Cytometry A. 2005 Jun;65(2):124-32.

15.

Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer.

Haandbæk N, Bürgel SC, Heer F, Hierlemann A.

Lab Chip. 2014 Jan 21;14(2):369-77. doi: 10.1039/c3lc50866h. Epub 2013 Nov 22.

PMID:
24264643
16.

High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences.

Sun T, Holmes D, Gawad S, Green NG, Morgan H.

Lab Chip. 2007 Aug;7(8):1034-40. Epub 2007 Jun 8.

PMID:
17653346
17.

Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis.

Cetin B, Li D.

Electrophoresis. 2010 Sep;31(18):3035-43. doi: 10.1002/elps.201000107. Erratum in: Electrophoresis. 2010 Oct;31(21):3619.

PMID:
20872609
18.

Single-Cell Electrical Phenotyping Enabling the Classification of Mouse Tumor Samples.

Zhao Y, Jiang M, Chen D, Zhao X, Xue C, Hao R, Yue W, Wang J, Chen J.

Sci Rep. 2016 Jan 14;6:19487. doi: 10.1038/srep19487.

19.

A systematic investigation into the electrical properties of single HeLa cells via impedance measurements and COMSOL simulations.

Wang MH, Jang LS.

Biosens Bioelectron. 2009 May 15;24(9):2830-5. doi: 10.1016/j.bios.2009.02.012. Epub 2009 Feb 21.

PMID:
19286365
20.

Bioimpedance analysis for the characterization of breast cancer cells in suspension.

Guofeng Qiao, Wei Wang, Wei Duan, Fan Zheng, Sinclair AJ, Chatwin CR.

IEEE Trans Biomed Eng. 2012 Aug;59(8):2321-9. doi: 10.1109/TBME.2012.2202904. Epub 2012 Jun 6.

PMID:
22692870

Supplemental Content

Support Center