Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 77

1.

Multi-omic data integration links deleted in breast cancer 1 (DBC1) degradation to chromatin remodeling in inflammatory response.

Nakayasu ES, Brown RN, Ansong C, Sydor MA, Imtiaz S, Mihai C, Sontag R, Hixson KK, Monroe ME, Sobreira TJ, Orr G, Petyuk VA, Yang F, Smith RD, Adkins JN.

Mol Cell Proteomics. 2013 Aug;12(8):2136-47. doi: 10.1074/mcp.M112.026138. Epub 2013 May 2.

2.

Hsp90 inhibition induces both protein-specific and global changes in the ubiquitinome.

Quadroni M, Potts A, Waridel P.

J Proteomics. 2015 Apr 29;120:215-29. doi: 10.1016/j.jprot.2015.02.020. Epub 2015 Mar 14.

PMID:
25782750
3.

The Proteomic Profile of Deleted in Breast Cancer 1 (DBC1) Interactions Points to a Multifaceted Regulation of Gene Expression.

Giguère SS, Guise AJ, Jean Beltran PM, Joshi PM, Greco TM, Quach OL, Kong J, Cristea IM.

Mol Cell Proteomics. 2016 Mar;15(3):791-809. doi: 10.1074/mcp.M115.054619. Epub 2015 Dec 9.

4.

Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes?

Nathan JA, Kim HT, Ting L, Gygi SP, Goldberg AL.

EMBO J. 2013 Feb 20;32(4):552-65. doi: 10.1038/emboj.2012.354. Epub 2013 Jan 11.

5.

Role of ubiquitination in the DNA damage response: proteomic analysis to identify new DNA-damage-induced ubiquitinated proteins.

Selvarajah J, Moumen A.

Biochem Soc Trans. 2010 Feb;38(Pt 1):87-91. doi: 10.1042/BST0380087. Review.

PMID:
20074041
6.

Deleted in breast cancer 1 (DBC1) deficiency results in apoptosis of breast cancer cells through impaired responses to UV-induced DNA damage.

Kim W, Kim JE.

Cancer Lett. 2013 Jun 10;333(2):180-6. doi: 10.1016/j.canlet.2013.01.026. Epub 2013 Jan 22.

PMID:
23352644
7.

Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase.

Nin V, Escande C, Chini CC, Giri S, Camacho-Pereira J, Matalonga J, Lou Z, Chini EN.

J Biol Chem. 2012 Jul 6;287(28):23489-501. doi: 10.1074/jbc.M112.365874. Epub 2012 May 2.

8.

Emergence of the A20/ABIN-mediated inhibition of NF-κB signaling via modifying the ubiquitinated proteins in a basal chordate.

Yuan S, Dong X, Tao X, Xu L, Ruan J, Peng J, Xu A.

Proc Natl Acad Sci U S A. 2014 May 6;111(18):6720-5. doi: 10.1073/pnas.1321187111. Epub 2014 Apr 21.

9.

A data set of human endogenous protein ubiquitination sites.

Shi Y, Chan DW, Jung SY, Malovannaya A, Wang Y, Qin J.

Mol Cell Proteomics. 2011 May;10(5):M110.002089. doi: 10.1074/mcp.M110.002089. Epub 2010 Oct 24.

10.

Loss of the tumor suppressor CYLD enhances Wnt/beta-catenin signaling through K63-linked ubiquitination of Dvl.

Tauriello DV, Haegebarth A, Kuper I, Edelmann MJ, Henraat M, Canninga-van Dijk MR, Kessler BM, Clevers H, Maurice MM.

Mol Cell. 2010 Mar 12;37(5):607-19. doi: 10.1016/j.molcel.2010.01.035.

11.

Exploring the linkage dependence of polyubiquitin conformations using molecular modeling.

Fushman D, Walker O.

J Mol Biol. 2010 Jan 29;395(4):803-14. doi: 10.1016/j.jmb.2009.10.039. Epub 2009 Oct 22.

13.

HAT cofactor TRRAP mediates beta-catenin ubiquitination on the chromatin and the regulation of the canonical Wnt pathway.

Finkbeiner MG, Sawan C, Ouzounova M, Murr R, Herceg Z.

Cell Cycle. 2008 Dec 15;7(24):3908-14. Epub 2008 Dec 6.

PMID:
19066453
14.

Deleted in Breast Cancer 1 regulates cellular senescence during obesity.

Escande C, Nin V, Pirtskhalava T, Chini CC, Thereza Barbosa M, Mathison A, Urrutia R, Tchkonia T, Kirkland JL, Chini EN.

Aging Cell. 2014 Oct;13(5):951-3. doi: 10.1111/acel.12235. Epub 2014 Jul 3.

15.

HDAC3 is negatively regulated by the nuclear protein DBC1.

Chini CC, Escande C, Nin V, Chini EN.

J Biol Chem. 2010 Dec 24;285(52):40830-7. doi: 10.1074/jbc.M110.153270. Epub 2010 Oct 28.

16.

Proteomic analysis of ubiquitinated proteins in normal hepatocyte cell line Chang liver cells.

Tan F, Lu L, Cai Y, Wang J, Xie Y, Wang L, Gong Y, Xu BE, Wu J, Luo Y, Qiang B, Yuan J, Sun X, Peng X.

Proteomics. 2008 Jul;8(14):2885-96. doi: 10.1002/pmic.200700887.

PMID:
18655026
17.

The complexity of recognition of ubiquitinated substrates by the 26S proteasome.

Ciechanover A, Stanhill A.

Biochim Biophys Acta. 2014 Jan;1843(1):86-96. doi: 10.1016/j.bbamcr.2013.07.007. Epub 2013 Jul 18. Review.

18.

Nitric oxide increases lysine 48-linked ubiquitination following arterial injury.

Oustwani CS, Tsihlis ND, Vavra AK, Jiang Q, Martinez J, Kibbe MR.

J Surg Res. 2011 Sep;170(1):e169-77. doi: 10.1016/j.jss.2011.05.032. Epub 2011 Jun 15.

19.

Proteomic dissection of agonist-specific TLR-mediated inflammatory responses on macrophages at subcellular resolution.

Xue Y, Yun D, Esmon A, Zou P, Zuo S, Yu Y, He F, Yang P, Chen X.

J Proteome Res. 2008 Aug;7(8):3180-93. doi: 10.1021/pr800021a. Epub 2008 Jun 24.

PMID:
18572962
20.

Inhibition of SUV39H1 methyltransferase activity by DBC1.

Li Z, Chen L, Kabra N, Wang C, Fang J, Chen J.

J Biol Chem. 2009 Apr 17;284(16):10361-6. doi: 10.1074/jbc.M900956200. Epub 2009 Feb 13.

Supplemental Content

Support Center