Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 221

1.

Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data.

Brigadoi S, Ceccherini L, Cutini S, Scarpa F, Scatturin P, Selb J, Gagnon L, Boas DA, Cooper RJ.

Neuroimage. 2014 Jan 15;85 Pt 1:181-91. doi: 10.1016/j.neuroimage.2013.04.082. Epub 2013 Apr 29.

2.

A kurtosis-based wavelet algorithm for motion artifact correction of fNIRS data.

Chiarelli AM, Maclin EL, Fabiani M, Gratton G.

Neuroimage. 2015 May 15;112:128-37. doi: 10.1016/j.neuroimage.2015.02.057. Epub 2015 Mar 4.

3.

Comparison of motion correction techniques applied to functional near-infrared spectroscopy data from children.

Hu XS, Arredondo MM, Gomba M, Confer N, DaSilva AF, Johnson TD, Shalinsky M, Kovelman I.

J Biomed Opt. 2015;20(12):126003. doi: 10.1117/1.JBO.20.12.126003.

PMID:
26662300
4.

A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy.

Cooper RJ, Selb J, Gagnon L, Phillip D, Schytz HW, Iversen HK, Ashina M, Boas DA.

Front Neurosci. 2012 Oct 11;6:147. doi: 10.3389/fnins.2012.00147. eCollection 2012.

5.

A methodology for validating artifact removal techniques for fNIRS.

Sweeney KT, Ayaz H, Ward TE, Izzetoglu M, McLoone SF, Onaral B.

Conf Proc IEEE Eng Med Biol Soc. 2011;2011:4943-6. doi: 10.1109/IEMBS.2011.6091225.

PMID:
22255447
6.

Wavelet based motion artifact removal for Functional Near Infrared Spectroscopy.

Molavi B, Dumont GA.

Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5-8. doi: 10.1109/IEMBS.2010.5626589.

PMID:
21096093
7.

Method for removing motion artifacts from fNIRS data using ICA and an acceleration sensor.

Hiroyasu T, Nakamura Y, Yokouchi H.

Conf Proc IEEE Eng Med Biol Soc. 2013;2013:6800-3. doi: 10.1109/EMBC.2013.6611118.

PMID:
24111305
8.

Motion artifact cancellation in NIR spectroscopy using discrete Kalman filtering.

Izzetoglu M, Chitrapu P, Bunce S, Onaral B.

Biomed Eng Online. 2010 Mar 9;9:16. doi: 10.1186/1475-925X-9-16.

9.

Empirical mode decomposition-based motion artifact correction method for functional near-infrared spectroscopy.

Gu Y, Han J, Liang Z, Yan J, Li Z, Li X.

J Biomed Opt. 2016 Jan;21(1):15002. doi: 10.1117/1.JBO.21.1.015002. No abstract available.

PMID:
26747474
10.

Quantitative evaluation of deep and shallow tissue layers' contribution to fNIRS signal using multi-distance optodes and independent component analysis.

Funane T, Atsumori H, Katura T, Obata AN, Sato H, Tanikawa Y, Okada E, Kiguchi M.

Neuroimage. 2014 Jan 15;85 Pt 1:150-65. doi: 10.1016/j.neuroimage.2013.02.026. Epub 2013 Feb 22.

PMID:
23439443
11.

Further improvement in reducing superficial contamination in NIRS using double short separation measurements.

Gagnon L, Yücel MA, Boas DA, Cooper RJ.

Neuroimage. 2014 Jan 15;85 Pt 1:127-35. doi: 10.1016/j.neuroimage.2013.01.073. Epub 2013 Feb 9.

12.

Wavelet-based motion artifact removal for functional near-infrared spectroscopy.

Molavi B, Dumont GA.

Physiol Meas. 2012 Feb;33(2):259-70. doi: 10.1088/0967-3334/33/2/259. Epub 2012 Jan 25.

PMID:
22273765
13.

Validation of a novel hemodynamic model for coherent hemodynamics spectroscopy (CHS) and functional brain studies with fNIRS and fMRI.

Pierro ML, Hallacoglu B, Sassaroli A, Kainerstorfer JM, Fantini S.

Neuroimage. 2014 Jan 15;85 Pt 1:222-33. doi: 10.1016/j.neuroimage.2013.03.037. Epub 2013 Apr 2.

14.

TARGETED PRINCIPLE COMPONENT ANALYSIS: A NEW MOTION ARTIFACT CORRECTION APPROACH FOR NEAR-INFRARED SPECTROSCOPY.

Yücel MA, Selb J, Cooper RJ, Boas DA.

J Innov Opt Health Sci. 2014 Mar 1;7(2). pii: 1350066.

15.

A wearable multi-channel fNIRS system for brain imaging in freely moving subjects.

Piper SK, Krueger A, Koch SP, Mehnert J, Habermehl C, Steinbrink J, Obrig H, Schmitz CH.

Neuroimage. 2014 Jan 15;85 Pt 1:64-71. doi: 10.1016/j.neuroimage.2013.06.062. Epub 2013 Jun 28.

16.

Statistical analysis of fNIRS data: a comprehensive review.

Tak S, Ye JC.

Neuroimage. 2014 Jan 15;85 Pt 1:72-91. doi: 10.1016/j.neuroimage.2013.06.016. Epub 2013 Jun 15. Review.

PMID:
23774396
17.

Motion artifact removal for functional near infrared spectroscopy: a comparison of methods.

Robertson FC, Douglas TS, Meintjes EM.

IEEE Trans Biomed Eng. 2010 Jun;57(6):1377-87. doi: 10.1109/TBME.2009.2038667. Epub 2010 Feb 17.

PMID:
20172809
18.

Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: an easy-to-use filter method.

Haeussinger FB, Dresler T, Heinzel S, Schecklmann M, Fallgatter AJ, Ehlis AC.

Neuroimage. 2014 Jul 15;95:69-79. doi: 10.1016/j.neuroimage.2014.02.035. Epub 2014 Mar 19.

PMID:
24657779
19.

Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI.

Erdoğan SB, Yücel MA, Akın A.

Neuroimage. 2014 Feb 15;87:490-504. doi: 10.1016/j.neuroimage.2013.10.024. Epub 2013 Oct 19.

PMID:
24148922
20.

A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study.

Basso Moro S, Bisconti S, Muthalib M, Spezialetti M, Cutini S, Ferrari M, Placidi G, Quaresima V.

Neuroimage. 2014 Jan 15;85 Pt 1:451-60. doi: 10.1016/j.neuroimage.2013.05.031. Epub 2013 May 17.

PMID:
23684867

Supplemental Content

Support Center