Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 125

1.

Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste.

Kang DH, Chen M, Ogunseitan OA.

Environ Sci Technol. 2013 May 21;47(10):5495-503. doi: 10.1021/es400614y.

PMID:
23638841
2.

Environmental impact assessment and end-of-life treatment policy analysis for Li-ion batteries and Ni-MH batteries.

Yu Y, Chen B, Huang K, Wang X, Wang D.

Int J Environ Res Public Health. 2014 Mar 18;11(3):3185-98. doi: 10.3390/ijerph110303185.

3.

Potential environmental impacts of light-emitting diodes (LEDs): metallic resources, toxicity, and hazardous waste classification.

Lim SR, Kang D, Ogunseitan OA, Schoenung JM.

Environ Sci Technol. 2011 Jan 1;45(1):320-7. doi: 10.1021/es101052q.

PMID:
21138290
4.

Economic and environmental characterization of an evolving Li-ion battery waste stream.

Wang X, Gaustad G, Babbitt CW, Bailey C, Ganter MJ, Landi BJ.

J Environ Manage. 2014 Mar 15;135:126-34. doi: 10.1016/j.jenvman.2014.01.021.

PMID:
24531384
5.

Evolution of electronic waste toxicity: Trends in innovation and regulation.

Chen M, Ogunseitan OA, Wang J, Chen H, Wang B, Chen S.

Environ Int. 2016 Apr-May;89-90:147-54. doi: 10.1016/j.envint.2016.01.022.

PMID:
26854858
6.

Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone.

Jha MK, Kumari A, Jha AK, Kumar V, Hait J, Pandey BD.

Waste Manag. 2013 Sep;33(9):1890-7. doi: 10.1016/j.wasman.2013.05.008.

PMID:
23773705
7.

Impact on global metal flows arising from the use of portable rechargeable batteries.

Rydh CJ, Svärd B.

Sci Total Environ. 2003 Jan 20;302(1-3):167-84.

PMID:
12526907
8.

Environmental characteristics comparison of Li-ion batteries and Ni-MH batteries under the uncertainty of cycle performance.

Yu Y, Wang X, Wang D, Huang K, Wang L, Bao L, Wu F.

J Hazard Mater. 2012 Aug 30;229-230:455-60. doi: 10.1016/j.jhazmat.2012.06.017.

PMID:
22763226
9.

Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.

Chen X, Chen Y, Zhou T, Liu D, Hu H, Fan S.

Waste Manag. 2015 Apr;38:349-56. doi: 10.1016/j.wasman.2014.12.023.

PMID:
25619126
10.

Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.

Okamoto E, Nakamura M, Akasaka Y, Inoue Y, Abe Y, Chinzei T, Saito I, Isoyama T, Mochizuki S, Imachi K, Mitamura Y.

Artif Organs. 2007 Jul;31(7):538-41.

PMID:
17584478
11.

A material flow of lithium batteries in Taiwan.

Chang TC, You SJ, Yu BS, Yao KF.

J Hazard Mater. 2009 Apr 30;163(2-3):910-5. doi: 10.1016/j.jhazmat.2008.07.043.

PMID:
18723278
12.

Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration.

Niu Z, Zou Y, Xin B, Chen S, Liu C, Li Y.

Chemosphere. 2014 Aug;109:92-8. doi: 10.1016/j.chemosphere.2014.02.059.

PMID:
24873712
13.

Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.

Majeau-Bettez G, Hawkins TR, Strømman AH.

Environ Sci Technol. 2011 May 15;45(10):4548-54. doi: 10.1021/es103607c. Erratum in: Environ Sci Technol. 2011 Jun 15;45(12):5454.

PMID:
21506538
14.

Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries.

Li L, Ge J, Chen R, Wu F, Chen S, Zhang X.

Waste Manag. 2010 Dec;30(12):2615-21. doi: 10.1016/j.wasman.2010.08.008.

PMID:
20817431
15.

Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).

Guo Y, Li F, Zhu H, Li G, Huang J, He W.

Waste Manag. 2016 May;51:227-33. doi: 10.1016/j.wasman.2015.11.036.

PMID:
26674969
16.

Nanomaterials for lithium-ion rechargeable batteries.

Liu HK, Wang GX, Guo Z, Wang J, Konstantinov K.

J Nanosci Nanotechnol. 2006 Jan;6(1):1-15. Review.

PMID:
16573064
17.

Potential environmental impacts from the metals in incandescent, compact fluorescent lamp (CFL), and light-emitting diode (LED) bulbs.

Lim SR, Kang D, Ogunseitan OA, Schoenung JM.

Environ Sci Technol. 2013 Jan 15;47(2):1040-7. doi: 10.1021/es302886m.

PMID:
23237340
18.

Optimum selection of an implantable secondary battery for an artificial heart by examination of the cycle life test.

Okamoto E, Watanabe K, Hashiba K, Inoue T, Iwazawa E, Momoi M, Hashimoto T, Mitamura Y.

ASAIO J. 2002 Sep-Oct;48(5):495-502.

PMID:
12296569
19.

Contribution of Li-ion batteries to the environmental impact of electric vehicles.

Notter DA, Gauch M, Widmer R, Wäger P, Stamp A, Zah R, Althaus HJ.

Environ Sci Technol. 2010 Sep 1;44(17):6550-6. doi: 10.1021/es903729a. Erratum in: Environ Sci Technol. 2010 Oct 1;44(19):7744.

PMID:
20695466
20.

An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach.

Wang MM, Zhang CC, Zhang FS.

Waste Manag. 2016 May;51:239-44. doi: 10.1016/j.wasman.2016.03.006.

PMID:
26965214

Supplemental Content

Support Center