Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 276

1.

Resveratrols in grape berry skins and leaves in vitis germplasm.

Wang L, Xu M, Liu C, Wang J, Xi H, Wu B, Loescher W, Duan W, Fan P, Li S.

PLoS One. 2013 Apr 24;8(4):e61642. doi: 10.1371/journal.pone.0061642. Print 2013.

2.

Resveratrols in Vitis berry skins and leaves: their extraction and analysis by HPLC.

Liu C, Wang L, Wang J, Wu B, Liu W, Fan P, Liang Z, Li S.

Food Chem. 2013 Jan 15;136(2):643-9. doi: 10.1016/j.foodchem.2012.08.017. Epub 2012 Aug 21.

PMID:
23122109
3.

Extractable amounts of trans-resveratrol in seed and berry skin in Vitis evaluated at the germplasm level.

Li X, Wu B, Wang L, Li S.

J Agric Food Chem. 2006 Nov 15;54(23):8804-11.

PMID:
17090126
4.

Individual and combined effects of CaCl₂ and UV-C on the biosynthesis of resveratrols in grape leaves and berry skins.

Wang L, Ma L, Xi H, Duan W, Wang J, Li S.

J Agric Food Chem. 2013 Jul 24;61(29):7135-41. doi: 10.1021/jf401220m. Epub 2013 Jul 16.

PMID:
23855433
5.

Stilbene accumulation and expression of stilbene biosynthesis pathway genes in wild grapevine Vitis amurensis Rupr.

Kiselev KV, Aleynova OA, Grigorchuk VP, Dubrovina AS.

Planta. 2017 Jan;245(1):151-159. doi: 10.1007/s00425-016-2598-z. Epub 2016 Sep 29.

PMID:
27686467
6.

Method for the quantitative extraction of resveratrol and piceid isomers in grape berry skins. Effect of powdery mildew on the stilbene content.

Romero-Pérez AI, Lamuela-Raventós RM, Andrés-Lacueva C, de La Torre-Boronat MC.

J Agric Food Chem. 2001 Jan;49(1):210-5.

PMID:
11170579
7.

Stilbene compounds and stilbene synthase expression during ripening, wilting, and UV treatment in grape cv. Corvina.

Versari A, Parpinello GP, Tornielli GB, Ferrarini R, Giulivo C.

J Agric Food Chem. 2001 Nov;49(11):5531-6.

PMID:
11714355
8.

Piceid, the major resveratrol derivative in grape juices.

Romero-Pérez AI, Ibern-Gómez M, Lamuela-Raventós RM, de La Torre-Boronat MC.

J Agric Food Chem. 1999 Apr;47(4):1533-6.

PMID:
10564012
9.

Simultaneous analysis of serotonin, melatonin, piceid and resveratrol in fruits using liquid chromatography tandem mass spectrometry.

Huang X, Mazza G.

J Chromatogr A. 2011 Jun 24;1218(25):3890-9. doi: 10.1016/j.chroma.2011.04.049. Epub 2011 Apr 27.

PMID:
21570690
10.

Myb14, a direct activator of STS, is associated with resveratrol content variation in berry skin in two grape cultivars.

Fang L, Hou Y, Wang L, Xin H, Wang N, Li S.

Plant Cell Rep. 2014 Oct;33(10):1629-40. doi: 10.1007/s00299-014-1642-3. Epub 2014 Jun 20.

PMID:
24948530
11.

Phenolic composition of the edible parts (flesh and skin) of Bordô grape (Vitis labrusca) using HPLC-DAD-ESI-MS/MS.

Lago-Vanzela ES, Da-Silva R, Gomes E, García-Romero E, Hermosín-Gutiérrez I.

J Agric Food Chem. 2011 Dec 28;59(24):13136-46. doi: 10.1021/jf203679n. Epub 2011 Dec 5.

PMID:
22112247
12.

Occurrence and estimation of trans-resveratrol in one-year-old canes from seven major Chinese grape producing regions.

Zhang A, Fang Y, Li X, Meng J, Wang H, Li H, Zhang Z, Guo Z.

Molecules. 2011 Mar 31;16(4):2846-61. doi: 10.3390/molecules16042846.

13.

Influence of pressing method on juice stilbene content in muscadine and bunch grapes.

Leblanc MR, Johnson CE, Wilson PW.

J Food Sci. 2008 May;73(4):H58-62. doi: 10.1111/j.1750-3841.2008.00733.x.

PMID:
18460131
14.

Investigation of the distribution and season regularity of resveratrol in Vitis amurensis via HPLC-DAD-MS/MS.

Ji M, Li Q, Ji H, Lou H.

Food Chem. 2014 Jan 1;142:61-5. doi: 10.1016/j.foodchem.2013.06.131. Epub 2013 Jul 8.

PMID:
24001812
15.

Ripening and genotype control stilbene accumulation in healthy grapes.

Gatto P, Vrhovsek U, Muth J, Segala C, Romualdi C, Fontana P, Pruefer D, Stefanini M, Moser C, Mattivi F, Velasco R.

J Agric Food Chem. 2008 Dec 24;56(24):11773-85. doi: 10.1021/jf8017707.

PMID:
19032022
16.

Role of viticultural factors on stilbene concentrations of grapes and wine.

Bavaresco L.

Drugs Exp Clin Res. 2003;29(5-6):181-7. Review.

PMID:
15134373
17.

Stilbenic profile of cocoa liquors from different origins determined by RP-HPLC-APCI(+)-MS/MS. Detection of a new resveratrol hexoside.

Jerkovic V, Bröhan M, Monnart E, Nguyen F, Nizet S, Collin S.

J Agric Food Chem. 2010 Jun 9;58(11):7067-74. doi: 10.1021/jf101114c.

PMID:
20438125
18.

Impact of Bacillus cereus NRKT on grape ripe rot disease through resveratrol synthesis in berry skin.

Aoki T, Aoki Y, Ishiai S, Otoguro M, Suzuki S.

Pest Manag Sci. 2017 Jan;73(1):174-180. doi: 10.1002/ps.4283. Epub 2016 May 3.

PMID:
27038426
19.

Direct HPLC analysis of quercetin and trans-resveratrol in red wine, grape, and winemaking byproducts.

Careri M, Corradini C, Elviri L, Nicoletti I, Zagnoni I.

J Agric Food Chem. 2003 Aug 27;51(18):5226-31.

PMID:
12926863
20.

Fruit-localized photoreceptors increase phenolic compounds in berry skins of field-grown Vitis vinifera L. cv. Malbec.

González CV, Fanzone ML, Cortés LE, Bottini R, Lijavetzky DC, Ballaré CL, Boccalandro HE.

Phytochemistry. 2015 Feb;110:46-57. doi: 10.1016/j.phytochem.2014.11.018. Epub 2014 Dec 13.

PMID:
25514818

Supplemental Content

Support Center