Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 153

1.

Tamoxifen ameliorates peritoneal membrane damage by blocking mesothelial to mesenchymal transition in peritoneal dialysis.

Loureiro J, Sandoval P, del Peso G, Gónzalez-Mateo G, Fernández-Millara V, Santamaria B, Bajo MA, Sánchez-Tomero JA, Guerra-Azcona G, Selgas R, López-Cabrera M, Aguilera AI.

PLoS One. 2013 Apr 23;8(4):e61165. doi: 10.1371/journal.pone.0061165. Print 2013.

2.

Functional relevance of the switch of VEGF receptors/co-receptors during peritoneal dialysis-induced mesothelial to mesenchymal transition.

Pérez-Lozano ML, Sandoval P, Rynne-Vidal A, Aguilera A, Jiménez-Heffernan JA, Albar-Vizcaíno P, Majano PL, Sánchez-Tomero JA, Selgas R, López-Cabrera M.

PLoS One. 2013 Apr 9;8(4):e60776. doi: 10.1371/journal.pone.0060776. Print 2013.

3.

The monocyte chemoattractant protein-1 (MCP-1)/CCR2 system is involved in peritoneal dialysis-related epithelial-mesenchymal transition of peritoneal mesothelial cells.

Lee SH, Kang HY, Kim KS, Nam BY, Paeng J, Kim S, Li JJ, Park JT, Kim DK, Han SH, Yoo TH, Kang SW.

Lab Invest. 2012 Dec;92(12):1698-711. doi: 10.1038/labinvest.2012.132. Epub 2012 Sep 24.

4.

BMP-7 blocks mesenchymal conversion of mesothelial cells and prevents peritoneal damage induced by dialysis fluid exposure.

Loureiro J, Schilte M, Aguilera A, Albar-Vizcaíno P, Ramírez-Huesca M, Pérez-Lozano ML, González-Mateo G, Aroeira LS, Selgas R, Mendoza L, Ortiz A, Ruíz-Ortega M, van den Born J, Beelen RH, López-Cabrera M.

Nephrol Dial Transplant. 2010 Apr;25(4):1098-108. doi: 10.1093/ndt/gfp618. Epub 2010 Jan 12.

PMID:
20067910
5.

PPAR-γ agonist rosiglitazone protects peritoneal membrane from dialysis fluid-induced damage.

Sandoval P, Loureiro J, González-Mateo G, Pérez-Lozano ML, Maldonado-Rodríguez A, Sánchez-Tomero JA, Mendoza L, Santamaría B, Ortiz A, Ruíz-Ortega M, Selgas R, Martín P, Sánchez-Madrid F, Aguilera A, López-Cabrera M.

Lab Invest. 2010 Oct;90(10):1517-32. doi: 10.1038/labinvest.2010.111. Epub 2010 Jun 7.

6.

A pathogenetic role for endothelin-1 in peritoneal dialysis-associated fibrosis.

Busnadiego O, Loureiro-Álvarez J, Sandoval P, Lagares D, Dotor J, Pérez-Lozano ML, López-Armada MJ, Lamas S, López-Cabrera M, Rodríguez-Pascual F.

J Am Soc Nephrol. 2015 Jan;26(1):173-82. doi: 10.1681/ASN.2013070799. Epub 2014 Jul 10.

7.

Influence of bicarbonate/low-GDP peritoneal dialysis fluid (BicaVera) on in vitro and ex vivo epithelial-to-mesenchymal transition of mesothelial cells.

Fernández-Perpén A, Pérez-Lozano ML, Bajo MA, Albar-Vizcaino P, Sandoval Correa P, del Peso G, Castro MJ, Aguilera A, Ossorio M, Peter ME, Passlick-Deetjen J, Aroeira LS, Selgas R, López-Cabrera M, Sánchez-Tomero JA.

Perit Dial Int. 2012 May-Jun;32(3):292-304. doi: 10.3747/pdi.2010.00315. Epub 2012 Jan 3.

8.

Blocking TGF-β1 protects the peritoneal membrane from dialysate-induced damage.

Loureiro J, Aguilera A, Selgas R, Sandoval P, Albar-Vizcaíno P, Pérez-Lozano ML, Ruiz-Carpio V, Majano PL, Lamas S, Rodríguez-Pascual F, Borras-Cuesta F, Dotor J, López-Cabrera M.

J Am Soc Nephrol. 2011 Sep;22(9):1682-95. doi: 10.1681/ASN.2010111197. Epub 2011 Jul 8.

9.

Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factor.

Aroeira LS, Aguilera A, Selgas R, Ramírez-Huesca M, Pérez-Lozano ML, Cirugeda A, Bajo MA, del Peso G, Sánchez-Tomero JA, Jiménez-Heffernan JA, López-Cabrera M.

Am J Kidney Dis. 2005 Nov;46(5):938-48.

PMID:
16253736
10.

Carcinoma-associated fibroblasts derive from mesothelial cells via mesothelial-to-mesenchymal transition in peritoneal metastasis.

Sandoval P, Jiménez-Heffernan JA, Rynne-Vidal Á, Pérez-Lozano ML, Gilsanz Á, Ruiz-Carpio V, Reyes R, García-Bordas J, Stamatakis K, Dotor J, Majano PL, Fresno M, Cabañas C, López-Cabrera M.

J Pathol. 2013 Dec;231(4):517-31. doi: 10.1002/path.4281.

11.

Ex vivo analysis of dialysis effluent-derived mesothelial cells as an approach to unveiling the mechanism of peritoneal membrane failure.

López-Cabrera M, Aguilera A, Aroeira LS, Ramírez-Huesca M, Pérez-Lozano ML, Jiménez-Heffernan JA, Bajo MA, del Peso G, Sánchez-Tomero JA, Selgas R.

Perit Dial Int. 2006 Jan-Feb;26(1):26-34. Review.

PMID:
16538870
12.

miR-30a negatively regulates TGF-β1-induced epithelial-mesenchymal transition and peritoneal fibrosis by targeting Snai1.

Zhou Q, Yang M, Lan H, Yu X.

Am J Pathol. 2013 Sep;183(3):808-19. doi: 10.1016/j.ajpath.2013.05.019. Epub 2013 Jul 3.

PMID:
23831330
13.

Gremlin promotes peritoneal membrane injury in an experimental mouse model and is associated with increased solute transport in peritoneal dialysis patients.

Siddique I, Curran SP, Ghayur A, Liu L, Shi W, Hoff CM, Gangji AS, Brimble KS, Margetts PJ.

Am J Pathol. 2014 Nov;184(11):2976-84. doi: 10.1016/j.ajpath.2014.07.018. Epub 2014 Sep 3.

PMID:
25194662
14.

Pyrrole-imidazole polyamide targeting transforming growth factor β1 ameliorates encapsulating peritoneal sclerosis.

Serie K, Fukuda N, Nakai S, Matsuda H, Maruyama T, Murayama Y, Omata S.

Perit Dial Int. 2012 Jul-Aug;32(4):462-72. doi: 10.3747/pdi.2011.00092. Epub 2012 Jan 3.

15.

Paricalcitol ameliorates epithelial-to-mesenchymal transition in the peritoneal mesothelium.

Kang SH, Kim SO, Cho KH, Park JW, Yoon KW, Do JY.

Nephron Exp Nephrol. 2014;126(1):1-7. doi: 10.1159/000357156. Epub 2014 Jan 17.

PMID:
24458092
16.

Inhibition of transforming growth factor-activated kinase 1 (TAK1) blocks and reverses epithelial to mesenchymal transition of mesothelial cells.

Strippoli R, Benedicto I, Perez Lozano ML, Pellinen T, Sandoval P, Lopez-Cabrera M, del Pozo MA.

PLoS One. 2012;7(2):e31492. doi: 10.1371/journal.pone.0031492. Epub 2012 Feb 27.

17.

Peritoneal morphological and functional changes associated with platelet-derived growth factor B.

Cina D, Patel P, Bethune JC, Thoma J, Rodriguez-Lecompte JC, Hoff CM, Liu L, Margetts PJ.

Nephrol Dial Transplant. 2009 Feb;24(2):448-57. doi: 10.1093/ndt/gfn498. Epub 2008 Sep 4.

PMID:
18775895
18.

AKT regulation of mesothelial-to-mesenchymal transition in peritoneal dialysis is modulated by Smurf2 and deubiquitinating enzyme USP4.

Xiao L, Peng X, Liu F, Tang C, Hu C, Xu X, Wang M, Luo Y, Yang S, Song P, Xiao P, Kanwar YS, Sun L.

BMC Cell Biol. 2015 Mar 6;16:7. doi: 10.1186/s12860-015-0055-7.

19.

The dipeptide alanyl-glutamine ameliorates peritoneal fibrosis and attenuates IL-17 dependent pathways during peritoneal dialysis.

Ferrantelli E, Liappas G, Vila Cuenca M, Keuning ED, Foster TL, Vervloet MG, Lopéz-Cabrera M, Beelen RH.

Kidney Int. 2016 Mar;89(3):625-35. doi: 10.1016/j.kint.2015.12.005. Epub 2016 Jan 8.

PMID:
26880457
20.

Fibrin-Induced epithelial-to-mesenchymal transition of peritoneal mesothelial cells as a mechanism of peritoneal fibrosis: effects of pentoxifylline.

Fang CC, Huang JW, Shyu RS, Yen CJ, Shiao CH, Chiang CK, Hu RH, Tsai TJ.

PLoS One. 2012;7(9):e44765. doi: 10.1371/journal.pone.0044765. Epub 2012 Sep 13.

Supplemental Content

Support Center