Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Identification of a tissue-selective heat shock response regulatory network.

Guisbert E, Czyz DM, Richter K, McMullen PD, Morimoto RI.

PLoS Genet. 2013 Apr;9(4):e1003466. doi: 10.1371/journal.pgen.1003466. Epub 2013 Apr 18.

2.

Cellular Proteomes Drive Tissue-Specific Regulation of the Heat Shock Response.

Ma J, Grant CE, Plagens RN, Barrett LN, Kim Guisbert KS, Guisbert E.

G3 (Bethesda). 2017 Mar 10;7(3):1011-1018. doi: 10.1534/g3.116.038232.

3.

A neuronal GPCR is critical for the induction of the heat shock response in the nematode C. elegans.

Maman M, Carvalhal Marques F, Volovik Y, Dubnikov T, Bejerano-Sagie M, Cohen E.

J Neurosci. 2013 Apr 3;33(14):6102-11. doi: 10.1523/JNEUROSCI.4023-12.2013.

4.

Transcellular chaperone signaling: an organismal strategy for integrated cell stress responses.

van Oosten-Hawle P, Morimoto RI.

J Exp Biol. 2014 Jan 1;217(Pt 1):129-36. doi: 10.1242/jeb.091249. Review.

5.

A genetic screening strategy identifies novel regulators of the proteostasis network.

Silva MC, Fox S, Beam M, Thakkar H, Amaral MD, Morimoto RI.

PLoS Genet. 2011 Dec;7(12):e1002438. doi: 10.1371/journal.pgen.1002438. Epub 2011 Dec 29.

6.

A Differentiation Transcription Factor Establishes Muscle-Specific Proteostasis in Caenorhabditis elegans.

Bar-Lavan Y, Shemesh N, Dror S, Ofir R, Yeger-Lotem E, Ben-Zvi A.

PLoS Genet. 2016 Dec 30;12(12):e1006531. doi: 10.1371/journal.pgen.1006531. eCollection 2016 Dec.

7.

Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons.

Prahlad V, Cornelius T, Morimoto RI.

Science. 2008 May 9;320(5877):811-4. doi: 10.1126/science.1156093.

8.

Regulation of organismal proteostasis by transcellular chaperone signaling.

van Oosten-Hawle P, Porter RS, Morimoto RI.

Cell. 2013 Jun 6;153(6):1366-78. doi: 10.1016/j.cell.2013.05.015.

9.

Heat shock factor 1 prevents the reduction in thrashing due to heat shock in Caenorhabditis elegans.

Furuhashi T, Sakamoto K.

Biochem Biophys Res Commun. 2015 Jul 3;462(3):190-4. doi: 10.1016/j.bbrc.2015.04.086. Epub 2015 Apr 29.

PMID:
25935486
10.

Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway.

Keith SA, Maddux SK, Zhong Y, Chinchankar MN, Ferguson AA, Ghazi A, Fisher AL.

PLoS Genet. 2016 Feb 1;12(2):e1005823. doi: 10.1371/journal.pgen.1005823. eCollection 2016 Feb.

11.

Fluorodeoxyuridine enhances the heat shock response and decreases polyglutamine aggregation in an HSF-1-dependent manner in Caenorhabditis elegans.

Brunquell J, Bowers P, Westerheide SD.

Mech Ageing Dev. 2014 Nov-Dec;141-142:1-4. doi: 10.1016/j.mad.2014.08.002. Epub 2014 Aug 26.

PMID:
25168631
12.

Integrin-linked kinase modulates longevity and thermotolerance in C. elegans through neuronal control of HSF-1.

Kumsta C, Ching TT, Nishimura M, Davis AE, Gelino S, Catan HH, Yu X, Chu CC, Ong B, Panowski SH, Baird N, Bodmer R, Hsu AL, Hansen M.

Aging Cell. 2014 Jun;13(3):419-30. doi: 10.1111/acel.12189. Epub 2014 Jan 9.

13.

Functional analysis of OsHSBP1 and OsHSBP2 revealed their involvement in the heat shock response in rice (Oryza sativa L.).

Rana RM, Dong S, Tang H, Ahmad F, Zhang H.

J Exp Bot. 2012 Oct;63(16):6003-16. doi: 10.1093/jxb/ers245. Epub 2012 Sep 20.

PMID:
22996677
14.

Characterisation of hookworm heat shock factor binding protein (HSB-1) during heat shock and larval activation.

Krepp J, Gelmedin V, Hawdon JM.

Int J Parasitol. 2011 Apr;41(5):533-43. doi: 10.1016/j.ijpara.2010.12.001. Epub 2010 Dec 21.

15.

Identification of a novel cis-regulatory element involved in the heat shock response in Caenorhabditis elegans using microarray gene expression and computational methods.

GuhaThakurta D, Palomar L, Stormo GD, Tedesco P, Johnson TE, Walker DW, Lithgow G, Kim S, Link CD.

Genome Res. 2002 May;12(5):701-12. Erratum in: Genome Res 2002 Aug;12(8):1301.

16.

Heat shock and caloric restriction have a synergistic effect on the heat shock response in a sir2.1-dependent manner in Caenorhabditis elegans.

Raynes R, Leckey BD Jr, Nguyen K, Westerheide SD.

J Biol Chem. 2012 Aug 17;287(34):29045-53. doi: 10.1074/jbc.M112.353714. Epub 2012 Jul 9.

17.

The genome-wide role of HSF-1 in the regulation of gene expression in Caenorhabditis elegans.

Brunquell J, Morris S, Lu Y, Cheng F, Westerheide SD.

BMC Genomics. 2016 Aug 5;17:559. doi: 10.1186/s12864-016-2837-5.

18.

Dissecting the heat stress response in Chlamydomonas by pharmaceutical and RNAi approaches reveals conserved and novel aspects.

Schmollinger S, Schulz-Raffelt M, Strenkert D, Veyel D, Vallon O, Schroda M.

Mol Plant. 2013 Nov;6(6):1795-813. doi: 10.1093/mp/sst086. Epub 2013 May 27.

19.

Heat shock factor functions at the convergence of the stress response and developmental pathways in Caenorhabditis elegans.

Walker GA, Thompson FJ, Brawley A, Scanlon T, Devaney E.

FASEB J. 2003 Oct;17(13):1960-2. Epub 2003 Aug 1.

PMID:
12897069
20.

Organismal proteostasis: role of cell-nonautonomous regulation and transcellular chaperone signaling.

van Oosten-Hawle P, Morimoto RI.

Genes Dev. 2014 Jul 15;28(14):1533-43. doi: 10.1101/gad.241125.114. Review.

Supplemental Content

Support Center