Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 71

1.

Highly ordered MnO₂ nanopillars for enhanced supercapacitor performance.

Yu Z, Duong B, Abbitt D, Thomas J.

Adv Mater. 2013 Jun 25;25(24):3302-6. doi: 10.1002/adma.201300572. Epub 2013 May 2.

PMID:
23636961
2.

Bacterial-cellulose-derived carbon nanofiber@MnO₂ and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density.

Chen LF, Huang ZH, Liang HW, Guan QF, Yu SH.

Adv Mater. 2013 Sep 14;25(34):4746-52. doi: 10.1002/adma.201204949. Epub 2013 May 29.

PMID:
23716319
3.

High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2.

Gao H, Xiao F, Ching CB, Duan H.

ACS Appl Mater Interfaces. 2012 May;4(5):2801-10. doi: 10.1021/am300455d. Epub 2012 May 4.

PMID:
22545683
4.

MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage.

Sherrill SA, Duay J, Gui Z, Banerjee P, Rubloff GW, Lee SB.

Phys Chem Chem Phys. 2011 Sep 7;13(33):15221-6. doi: 10.1039/c1cp21815h. Epub 2011 Jul 20.

PMID:
21776451
5.

Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.

He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E.

ACS Nano. 2013 Jan 22;7(1):174-82. doi: 10.1021/nn304833s. Epub 2012 Dec 31.

PMID:
23249211
6.

Free-standing porous manganese dioxide/graphene composite films for high performance supercapacitors.

Guo WH, Liu TJ, Jiang P, Zhang ZJ.

J Colloid Interface Sci. 2015 Jan 1;437:304-10. doi: 10.1016/j.jcis.2014.08.060. Epub 2014 Sep 16.

PMID:
25441365
7.

High-performance asymmetric supercapacitors based on multilayer MnO2 /graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability.

Zhao Y, Ran W, He J, Huang Y, Liu Z, Liu W, Tang Y, Zhang L, Gao D, Gao F.

Small. 2015 Mar 18;11(11):1310-9. doi: 10.1002/smll.201401922. Epub 2014 Nov 10.

PMID:
25384679
8.

Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.

Cheng Y, Zhang H, Lu S, Varanasi CV, Liu J.

Nanoscale. 2013 Feb 7;5(3):1067-73. doi: 10.1039/c2nr33136e. Epub 2012 Dec 20.

PMID:
23254316
9.

The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.

Zhao X, Sánchez BM, Dobson PJ, Grant PS.

Nanoscale. 2011 Mar;3(3):839-55. doi: 10.1039/c0nr00594k. Epub 2011 Jan 20. Review.

PMID:
21253650
10.

Core-double-shell, carbon nanotube@polypyrrole@MnO₂ sponge as freestanding, compressible supercapacitor electrode.

Li P, Yang Y, Shi E, Shen Q, Shang Y, Wu S, Wei J, Wang K, Zhu H, Yuan Q, Cao A, Wu D.

ACS Appl Mater Interfaces. 2014 Apr 9;6(7):5228-34. doi: 10.1021/am500579c. Epub 2014 Mar 20.

PMID:
24621200
11.

Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.

Su F, Miao M.

Nanotechnology. 2014 Apr 4;25(13):135401. doi: 10.1088/0957-4484/25/13/135401. Epub 2014 Feb 28.

PMID:
24583526
12.

Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode.

Hao P, Zhao Z, Tian J, Li H, Sang Y, Yu G, Cai H, Liu H, Wong CP, Umar A.

Nanoscale. 2014 Oct 21;6(20):12120-9. doi: 10.1039/c4nr03574g. Epub 2014 Sep 9.

PMID:
25201446
13.

Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors.

Zhu J, Shi W, Xiao N, Rui X, Tan H, Lu X, Hng HH, Ma J, Yan Q.

ACS Appl Mater Interfaces. 2012 May;4(5):2769-74. doi: 10.1021/am300388u. Epub 2012 May 4.

PMID:
22496508
14.

On the configuration of supercapacitors for maximizing electrochemical performance.

Zhang J, Zhao XS.

ChemSusChem. 2012 May;5(5):818-41. doi: 10.1002/cssc.201100571. Epub 2012 Apr 30. Review.

PMID:
22550045
15.

High performance of a solid-state flexible asymmetric supercapacitor based on graphene films.

Choi BG, Chang SJ, Kang HW, Park CP, Kim HJ, Hong WH, Lee S, Huh YS.

Nanoscale. 2012 Aug 21;4(16):4983-8. doi: 10.1039/c2nr30991b. Epub 2012 Jun 29.

PMID:
22751863
16.

Hydrogen ion supercapacitor: a new hybrid configuration of highly dispersed MnO₂ in porous carbon coupled with nitrogen-doped highly ordered mesoporous carbon with enhanced H-insertion.

Qu D, Wen J, Liu D, Xie Z, Zhang X, Zheng D, Lei J, Zhong W, Tang H, Xiao L, Qu D.

ACS Appl Mater Interfaces. 2014 Dec 24;6(24):22687-94. doi: 10.1021/am506816b. Epub 2014 Dec 11.

PMID:
25458840
17.

MnO2 nanolayers on highly conductive TiO(0.54)N(0.46) nanotubes for supercapacitor electrodes with high power density and cyclic stability.

Wang Z, Li Z, Feng J, Yan S, Luo W, Liu J, Yu T, Zou Z.

Phys Chem Chem Phys. 2014 May 14;16(18):8521-8. doi: 10.1039/c3cp55456b.

PMID:
24668150
18.

Design and synthesis of MnO₂/Mn/MnO₂ sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage.

Li Q, Wang ZL, Li GR, Guo R, Ding LX, Tong YX.

Nano Lett. 2012 Jul 11;12(7):3803-7. doi: 10.1021/nl301748m. Epub 2012 Jun 27.

PMID:
22730918
19.

A nanostructured electrochromic supercapacitor.

Wei D, Scherer MR, Bower C, Andrew P, Ryhänen T, Steiner U.

Nano Lett. 2012 Apr 11;12(4):1857-62. doi: 10.1021/nl2042112. Epub 2012 Mar 15.

PMID:
22390702
20.

Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.

Salunkhe RR, Lee YH, Chang KH, Li JM, Simon P, Tang J, Torad NL, Hu CC, Yamauchi Y.

Chemistry. 2014 Oct 20;20(43):13838-52. doi: 10.1002/chem.201403649. Epub 2014 Sep 24.

PMID:
25251360

Supplemental Content

Support Center