Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Topographically-patterned porous membranes in a microfluidic device as an in vitro model of renal reabsorptive barriers.

Frohlich EM, Alonso JL, Borenstein JT, Zhang X, Arnaout MA, Charest JL.

Lab Chip. 2013 Jun 21;13(12):2311-9. doi: 10.1039/c3lc50199j. Epub 2013 May 2.

2.

Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment.

Jang KJ, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh KY, Ingber DE.

Integr Biol (Camb). 2013 Sep;5(9):1119-29. doi: 10.1039/c3ib40049b.

PMID:
23644926
3.

The use of controlled surface topography and flow-induced shear stress to influence renal epithelial cell function.

Frohlich EM, Zhang X, Charest JL.

Integr Biol (Camb). 2012 Jan;4(1):75-83. doi: 10.1039/c1ib00096a. Epub 2011 Dec 5.

PMID:
22139064
4.

Development of bioartificial renal tubule devices with lifespan-extended human renal proximal tubular epithelial cells.

Sanechika N, Sawada K, Usui Y, Hanai K, Kakuta T, Suzuki H, Kanai G, Fujimura S, Yokoyama TA, Fukagawa M, Terachi T, Saito A.

Nephrol Dial Transplant. 2011 Sep;26(9):2761-9. doi: 10.1093/ndt/gfr066. Epub 2011 Mar 18.

PMID:
21421594
5.

A microfluidic bioreactor with integrated transepithelial electrical resistance (TEER) measurement electrodes for evaluation of renal epithelial cells.

Ferrell N, Desai RR, Fleischman AJ, Roy S, Humes HD, Fissell WH.

Biotechnol Bioeng. 2010 Nov 1;107(4):707-16. doi: 10.1002/bit.22835.

6.

A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.

Jang KJ, Suh KY.

Lab Chip. 2010 Jan 7;10(1):36-42. doi: 10.1039/b907515a. Epub 2009 Aug 26.

PMID:
20024048
7.

BMP-7 fails to attenuate TGF-beta1-induced epithelial-to-mesenchymal transition in human proximal tubule epithelial cells.

Dudas PL, Argentieri RL, Farrell FX.

Nephrol Dial Transplant. 2009 May;24(5):1406-16. doi: 10.1093/ndt/gfn662. Epub 2008 Dec 4.

PMID:
19056781
8.

Human proximal tubule epithelial cells cultured on hollow fibers: living membranes that actively transport organic cations.

Jansen J, De Napoli IE, Fedecostante M, Schophuizen CM, Chevtchik NV, Wilmer MJ, van Asbeck AH, Croes HJ, Pertijs JC, Wetzels JF, Hilbrands LB, van den Heuvel LP, Hoenderop JG, Stamatialis D, Masereeuw R.

Sci Rep. 2015 Nov 16;5:16702. doi: 10.1038/srep16702.

9.

In vitro analysis of a hepatic device with intrinsic microvascular-based channels.

Carraro A, Hsu WM, Kulig KM, Cheung WS, Miller ML, Weinberg EJ, Swart EF, Kaazempur-Mofrad M, Borenstein JT, Vacanti JP, Neville C.

Biomed Microdevices. 2008 Dec;10(6):795-805. doi: 10.1007/s10544-008-9194-3.

PMID:
18604585
10.

Proinflammatory/profibrotic effects of interleukin-17A on human proximal tubule epithelium.

Dudas PL, Sague SL, Elloso MM, Farrell FX.

Nephron Exp Nephrol. 2011;117(4):e114-23. doi: 10.1159/000320177. Epub 2010 Oct 2.

PMID:
20924205
11.

Upscaling of a living membrane for bioartificial kidney device.

Chevtchik NV, Fedecostante M, Jansen J, Mihajlovic M, Wilmer M, RĂ¼th M, Masereeuw R, Stamatialis D.

Eur J Pharmacol. 2016 Nov 5;790:28-35. doi: 10.1016/j.ejphar.2016.07.009. Epub 2016 Jul 6.

PMID:
27395800
12.

Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes.

Duan Y, Gotoh N, Yan Q, Du Z, Weinstein AM, Wang T, Weinbaum S.

Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11418-23. doi: 10.1073/pnas.0804954105. Epub 2008 Aug 6.

13.

Development of a living membrane comprising a functional human renal proximal tubule cell monolayer on polyethersulfone polymeric membrane.

Schophuizen CM, De Napoli IE, Jansen J, Teixeira S, Wilmer MJ, Hoenderop JG, Van den Heuvel LP, Masereeuw R, Stamatialis D.

Acta Biomater. 2015 Mar;14:22-32. doi: 10.1016/j.actbio.2014.12.002. Epub 2014 Dec 17.

PMID:
25527093
14.

Size selective DNA transport through a nanoporous membrane in a PDMS microfluidic device.

Sheng Y, Bowser MT.

Analyst. 2012 Mar 7;137(5):1144-51. doi: 10.1039/c2an15966j. Epub 2012 Jan 20.

15.

The limitations of renal epithelial cell line HK-2 as a model of drug transporter expression and function in the proximal tubule.

Jenkinson SE, Chung GW, van Loon E, Bakar NS, Dalzell AM, Brown CD.

Pflugers Arch. 2012 Dec;464(6):601-11. doi: 10.1007/s00424-012-1163-2. Epub 2012 Sep 27.

PMID:
23014881
16.

Induction of epithelial-to-mesenchymal transition in proximal tubular epithelial cells on microfluidic devices.

Zhou M, Ma H, Lin H, Qin J.

Biomaterials. 2014 Feb;35(5):1390-401. doi: 10.1016/j.biomaterials.2013.10.070. Epub 2013 Nov 14.

PMID:
24239111
17.

A lung-on-a-chip array with an integrated bio-inspired respiration mechanism.

Stucki AO, Stucki JD, Hall SR, Felder M, Mermoud Y, Schmid RA, Geiser T, Guenat OT.

Lab Chip. 2015 Mar 7;15(5):1302-10. doi: 10.1039/c4lc01252f.

PMID:
25521475
18.

Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction.

Nieskens TT, Wilmer MJ.

Eur J Pharmacol. 2016 Nov 5;790:46-56. doi: 10.1016/j.ejphar.2016.07.018. Epub 2016 Jul 9. Review.

PMID:
27401035
19.

Leakage-free bonding of porous membranes into layered microfluidic array systems.

Chueh BH, Huh D, Kyrtsos CR, Houssin T, Futai N, Takayama S.

Anal Chem. 2007 May 1;79(9):3504-8. Epub 2007 Mar 28.

20.

Particle sorting using a porous membrane in a microfluidic device.

Wei H, Chueh BH, Wu H, Hall EW, Li CW, Schirhagl R, Lin JM, Zare RN.

Lab Chip. 2011 Jan 21;11(2):238-45. doi: 10.1039/c0lc00121j. Epub 2010 Nov 8.

PMID:
21057685

Supplemental Content

Support Center