Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Murine muscle engineered from dermal precursors: an in vitro model for skeletal muscle generation, degeneration, and fatty infiltration.

García-Parra P, Naldaiz-Gastesi N, Maroto M, Padín JF, Goicoechea M, Aiastui A, Fernández-Morales JC, García-Belda P, Lacalle J, Álava JI, García-Verdugo JM, García AG, Izeta A, López de Munain A.

Tissue Eng Part C Methods. 2014 Jan;20(1):28-41. doi: 10.1089/ten.TEC.2013.0146. Epub 2013 Jun 22.

2.

Physiological characterization of human muscle acetylcholine receptors from ALS patients.

Palma E, Inghilleri M, Conti L, Deflorio C, Frasca V, Manteca A, Pichiorri F, Roseti C, Torchia G, Limatola C, Grassi F, Miledi R.

Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20184-8. doi: 10.1073/pnas.1117975108. Epub 2011 Nov 29.

3.

Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts.

Ito A, Yamamoto M, Ikeda K, Sato M, Kawabe Y, Kamihira M.

J Biosci Bioeng. 2015 May;119(5):596-603. doi: 10.1016/j.jbiosc.2014.10.008. Epub 2014 Nov 21.

PMID:
25454061
4.

Synergy between myogenic and non-myogenic cells in a 3D tissue-engineered craniofacial skeletal muscle construct.

Brady MA, Lewis MP, Mudera V.

J Tissue Eng Regen Med. 2008 Oct;2(7):408-17. doi: 10.1002/term.112.

PMID:
18720445
5.

A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain.

Heher P, Maleiner B, Prüller J, Teuschl AH, Kollmitzer J, Monforte X, Wolbank S, Redl H, Rünzler D, Fuchs C.

Acta Biomater. 2015 Sep;24:251-65. doi: 10.1016/j.actbio.2015.06.033. Epub 2015 Jun 30.

PMID:
26141153
6.

Factors affecting the structure and maturation of human tissue engineered skeletal muscle.

Martin NR, Passey SL, Player DJ, Khodabukus A, Ferguson RA, Sharples AP, Mudera V, Baar K, Lewis MP.

Biomaterials. 2013 Jul;34(23):5759-65. doi: 10.1016/j.biomaterials.2013.04.002. Epub 2013 May 1.

PMID:
23643182
7.

Epigenetics: DNA demethylation promotes skeletal myotube maturation.

Hupkes M, Jonsson MK, Scheenen WJ, van Rotterdam W, Sotoca AM, van Someren EP, van der Heyden MA, van Veen TA, van Ravestein-van Os RI, Bauerschmidt S, Piek E, Ypey DL, van Zoelen EJ, Dechering KJ.

FASEB J. 2011 Nov;25(11):3861-72. doi: 10.1096/fj.11-186122. Epub 2011 Jul 27.

PMID:
21795504
8.
9.

Hypoxia promotes proliferation of human myogenic satellite cells: a potential benefactor in tissue engineering of skeletal muscle.

Koning M, Werker PM, van Luyn MJ, Harmsen MC.

Tissue Eng Part A. 2011 Jul;17(13-14):1747-58. doi: 10.1089/ten.tea.2010.0624. Epub 2011 Mar 25.

PMID:
21438665
10.

Effects of Dexamethasone on Satellite Cells and Tissue Engineered Skeletal Muscle Units.

Syverud BC, VanDusen KW, Larkin LM.

Tissue Eng Part A. 2016 Mar;22(5-6):480-9. doi: 10.1089/ten.TEA.2015.0545. Epub 2016 Feb 23.

11.

Production of arrays of cardiac and skeletal muscle myofibers by micropatterning techniques on a soft substrate.

Cimetta E, Pizzato S, Bollini S, Serena E, De Coppi P, Elvassore N.

Biomed Microdevices. 2009 Apr;11(2):389-400. doi: 10.1007/s10544-008-9245-9.

PMID:
18987976
12.

TGFβ functionalized starPEG-heparin hydrogels modulate human dermal fibroblast growth and differentiation.

Watarai A, Schirmer L, Thönes S, Freudenberg U, Werner C, Simon JC, Anderegg U.

Acta Biomater. 2015 Oct;25:65-75. doi: 10.1016/j.actbio.2015.07.036. Epub 2015 Jul 26.

PMID:
26219861
13.

Parameters in three-dimensional osteospheroids of telomerized human mesenchymal (stromal) stem cells grown on osteoconductive scaffolds that predict in vivo bone-forming potential.

Burns JS, Rasmussen PL, Larsen KH, Schrøder HD, Kassem M.

Tissue Eng Part A. 2010 Jul;16(7):2331-42. doi: 10.1089/ten.TEA.2009.0735.

PMID:
20196644
14.

Autocrine activation of nicotinic acetylcholine receptors contributes to Ca2+ spikes in mouse myotubes during myogenesis.

Bandi E, Bernareggi A, Grandolfo M, Mozzetta C, Augusti-Tocco G, Ruzzier F, Lorenzon P.

J Physiol. 2005 Oct 1;568(Pt 1):171-80. Epub 2005 Jul 21.

15.

Altered inactivation of Ca2+ current and Ca2+ release in mouse muscle fibers deficient in the DHP receptor gamma1 subunit.

Ursu D, Schuhmeier RP, Freichel M, Flockerzi V, Melzer W.

J Gen Physiol. 2004 Nov;124(5):605-18.

16.

Activation of histamine H3 receptor decreased cytoplasmic Ca(2+) imaging during electrical stimulation in the skeletal myotubes.

Chen Y, Paavola J, Stegajev V, Stark H, Chazot PL, Wen JG, Konttinen YT.

Eur J Pharmacol. 2015 May 5;754:173-8. doi: 10.1016/j.ejphar.2015.02.035. Epub 2015 Mar 3.

PMID:
25746421
17.

Residual sarcoplasmic reticulum Ca2+ concentration after Ca2+ release in skeletal myofibers from young adult and old mice.

Wang ZM, Tang S, Messi ML, Yang JJ, Delbono O.

Pflugers Arch. 2012 Apr;463(4):615-24. doi: 10.1007/s00424-012-1073-3. Epub 2012 Jan 17.

18.

Further development of a tissue engineered muscle repair construct in vitro for enhanced functional recovery following implantation in vivo in a murine model of volumetric muscle loss injury.

Corona BT, Machingal MA, Criswell T, Vadhavkar M, Dannahower AC, Bergman C, Zhao W, Christ GJ.

Tissue Eng Part A. 2012 Jun;18(11-12):1213-28. doi: 10.1089/ten.TEA.2011.0614. Epub 2012 May 10.

20.

Characterization of human myoblast differentiation for tissue-engineering purposes by quantitative gene expression analysis.

Stern-Straeter J, Bonaterra GA, Kassner SS, Zügel S, Hörmann K, Kinscherf R, Goessler UR.

J Tissue Eng Regen Med. 2011 Aug;5(8):e197-206. doi: 10.1002/term.417. Epub 2011 Mar 3.

PMID:
21370490

Supplemental Content

Support Center