Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 129

1.

A general method for transferring graphene onto soft surfaces.

Song J, Kam FY, Png RQ, Seah WL, Zhuo JM, Lim GK, Ho PK, Chua LL.

Nat Nanotechnol. 2013 May;8(5):356-62. doi: 10.1038/nnano.2013.63. Epub 2013 Apr 28.

PMID:
23624698
2.

Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method.

Jung MW, Myung S, Kim KW, Song W, Jo YY, Lee SS, Lim J, Park CY, An KS.

Nanotechnology. 2014 Jul 18;25(28):285302. doi: 10.1088/0957-4484/25/28/285302. Epub 2014 Jun 27.

PMID:
24971722
3.

A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate.

Lin WH, Chen TH, Chang JK, Taur JI, Lo YY, Lee WL, Chang CS, Su WB, Wu CI.

ACS Nano. 2014 Feb 25;8(2):1784-91. doi: 10.1021/nn406170d. Epub 2014 Jan 31.

PMID:
24471977
4.

Clean graphene electrodes on organic thin-film devices via orthogonal fluorinated chemistry.

Beck JH, Barton RA, Cox MP, Alexandrou K, Petrone N, Olivieri G, Yang S, Hone J, Kymissis I.

Nano Lett. 2015 Apr 8;15(4):2555-61. doi: 10.1021/acs.nanolett.5b00110. Epub 2015 Mar 23.

PMID:
25774924
5.

Fabrication of transferable Al(2)O(3) nanosheet by atomic layer deposition for graphene FET.

Jung H, Park J, Oh IK, Choi T, Lee S, Hong J, Lee T, Kim SH, Kim H.

ACS Appl Mater Interfaces. 2014 Feb 26;6(4):2764-9. doi: 10.1021/am4052987. Epub 2014 Feb 11.

PMID:
24483324
6.

Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications.

Feng Y, Chen K.

Nanotechnology. 2015 Jan 21;26(3):035302. doi: 10.1088/0957-4484/26/3/035302. Epub 2014 Dec 30.

PMID:
25549272
7.

High-frequency self-aligned graphene transistors with transferred gate stacks.

Cheng R, Bai J, Liao L, Zhou H, Chen Y, Liu L, Lin YC, Jiang S, Huang Y, Duan X.

Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11588-92. doi: 10.1073/pnas.1205696109. Epub 2012 Jul 2.

8.

Wafer-scale patterning of reduced graphene oxide electrodes by transfer-and-reverse stamping for high performance OFETs.

Lee JS, Kim NH, Kang MS, Yu H, Lee DR, Oh JH, Chang ST, Cho JH.

Small. 2013 Aug 26;9(16):2817-25. doi: 10.1002/smll.201300538. Epub 2013 Apr 16.

PMID:
23589341
9.

Graphene-based electrodes for enhanced organic thin film transistors based on pentacene.

Basu S, Lee MC, Wang YH.

Phys Chem Chem Phys. 2014 Aug 21;16(31):16701-10. doi: 10.1039/c3cp55440f.

PMID:
25000388
10.

Blending effect of 6,13-bis(triisopropylsilylethynyl) pentacene-graphene composite layers for flexible thin film transistors with a polymer gate dielectric.

Basu S, Adriyanto F, Wang YH.

Nanotechnology. 2014 Feb 28;25(8):085201. doi: 10.1088/0957-4484/25/8/085201. Epub 2014 Feb 4.

PMID:
24492205
11.

Large scale pattern graphene electrode for high performance in transparent organic single crystal field-effect transistors.

Liu W, Jackson BL, Zhu J, Miao CQ, Chung CH, Park YJ, Sun K, Woo J, Xie YH.

ACS Nano. 2010 Jul 27;4(7):3927-32. doi: 10.1021/nn100728p. Erratum in: ACS Nano. 2011 Mar 22;5(3):2412. Chung, Choon-Heui [corrected to Chung, Choong-Heui].

PMID:
20536162
12.

Uniform growth of high-quality oxide thin films on graphene using a CdSe quantum dot array seeding layer.

Kim YT, Lee SK, Kim KS, Kim YH, Ahn JH, Kwon YU.

ACS Appl Mater Interfaces. 2014 Aug 13;6(15):13015-22. doi: 10.1021/am502922w. Epub 2014 Aug 1.

PMID:
25058319
13.

Near room-temperature synthesis of transfer-free graphene films.

Kwak J, Chu JH, Choi JK, Park SD, Go H, Kim SY, Park K, Kim SD, Kim YW, Yoon E, Kodambaka S, Kwon SY.

Nat Commun. 2012 Jan 24;3:645. doi: 10.1038/ncomms1650.

PMID:
22273683
14.

Improved performance and stability of field-effect transistors with polymeric residue-free graphene channel transferred by gold layer.

Jang M, Trung TQ, Jung JH, Kim BY, Lee NE.

Phys Chem Chem Phys. 2014 Mar 7;16(9):4098-105. doi: 10.1039/c3cp53900h.

PMID:
24448397
15.

High, Anisotropic, and Substrate-Independent Mobility in Polymer Field-Effect Transistors Based on Preassembled Semiconducting Nanofibrils.

Bonacchi S, Gobbi M, Ferlauto L, Stoeckel MA, Liscio F, Milita S, Orgiu E, Samorì P.

ACS Nano. 2017 Feb 28;11(2):2000-2007. doi: 10.1021/acsnano.6b08184. Epub 2017 Feb 1.

PMID:
28117966
16.

Face-to-face transfer of wafer-scale graphene films.

Gao L, Ni GX, Liu Y, Liu B, Castro Neto AH, Loh KP.

Nature. 2014 Jan 9;505(7482):190-4. doi: 10.1038/nature12763. Epub 2013 Dec 11.

PMID:
24336218
17.

Graphene film growth on polycrystalline metals.

Edwards RS, Coleman KS.

Acc Chem Res. 2013 Jan 15;46(1):23-30. doi: 10.1021/ar3001266. Epub 2012 Aug 15.

PMID:
22891883
18.

Experimental and numerical investigation of contact-area-limited doping for top-contact pentacene thin-film transistors with Schottky contact.

Noda K, Wada Y, Toyabe T.

Phys Chem Chem Phys. 2015 Oct 28;17(40):26535-40. doi: 10.1039/c4cp01792g.

PMID:
24922359
19.

Mechanical and environmental stability of polymer thin-film-coated graphene.

Yan C, Kim KS, Lee SK, Bae SH, Hong BH, Kim JH, Lee HJ, Ahn JH.

ACS Nano. 2012 Mar 27;6(3):2096-103. doi: 10.1021/nn203923n. Epub 2011 Dec 19.

PMID:
22148162
20.

Large-scale pattern growth of graphene films for stretchable transparent electrodes.

Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH.

Nature. 2009 Feb 5;457(7230):706-10. doi: 10.1038/nature07719. Epub 2009 Jan 14.

PMID:
19145232

Supplemental Content

Support Center