Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92


Computed tomography imaging-guided radiotherapy by targeting upconversion nanocubes with significant imaging and radiosensitization enhancements.

Xing H, Zheng X, Ren Q, Bu W, Ge W, Xiao Q, Zhang S, Wei C, Qu H, Wang Z, Hua Y, Zhou L, Peng W, Zhao K, Shi J.

Sci Rep. 2013;3:1751. doi: 10.1038/srep01751.


Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization.

Al Zaki A, Joh D, Cheng Z, De Barros AL, Kao G, Dorsey J, Tsourkas A.

ACS Nano. 2014 Jan 28;8(1):104-12. doi: 10.1021/nn405701q. Epub 2014 Jan 7.


[Functional imaging and radiotherapy].

Lallemand F, Lakosi F, Hustinx R, Withofs N, Meunier P, Tshibanda L, Jodogne S, Coucke P, Martinive P.

Rev Med Liege. 2014;69 Suppl 1:20-8. French.


Gadolinium-based nanoparticles for theranostic MRI-radiosensitization.

Lux F, Sancey L, Bianchi A, Crémillieux Y, Roux S, Tillement O.

Nanomedicine (Lond). 2015;10(11):1801-15. doi: 10.2217/nnm.15.30. Epub 2015 Feb 25. Review.


Gold nanoparticles as contrast agents in x-ray imaging and computed tomography.

Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK.

Nanomedicine (Lond). 2015 Jan;10(2):321-41. doi: 10.2217/nnm.14.171. Review.


MRI-guided clinical 6-MV radiosensitization of glioma using a unique gadolinium-based nanoparticles injection.

Verry C, Dufort S, Barbier EL, Montigon O, Peoc'h M, Chartier P, Lux F, Balosso J, Tillement O, Sancey L, Le Duc G.

Nanomedicine (Lond). 2016 Sep;11(18):2405-17. doi: 10.2217/nnm-2016-0203. Epub 2016 Aug 16.


Folic acid-conjugated LaF3:Yb,Tm@SiO2 nanoprobes for targeting dual-modality imaging of upconversion luminescence and X-ray computed tomography.

Ma J, Huang P, He M, Pan L, Zhou Z, Feng L, Gao G, Cui D.

J Phys Chem B. 2012 Dec 6;116(48):14062-70. doi: 10.1021/jp309059u. Epub 2012 Nov 19.


A realistic utilization of nanotechnology in molecular imaging and targeted radiotherapy of solid tumors.

Patel V, Papineni RV, Gupta S, Stoyanova R, Ahmed MM.

Radiat Res. 2012 Apr;177(4):483-95. Epub 2012 Mar 9. Review.


Core-Shell MnSe@Bi2 Se3 Fabricated via a Cation Exchange Method as Novel Nanotheranostics for Multimodal Imaging and Synergistic Thermoradiotherapy.

Song G, Liang C, Gong H, Li M, Zheng X, Cheng L, Yang K, Jiang X, Liu Z.

Adv Mater. 2015 Oct 28;27(40):6110-7. doi: 10.1002/adma.201503006. Epub 2015 Sep 2.


Yb³⁺/Er³⁺-Codoped Bi₂O₃ Nanospheres: Probe for Upconversion Luminescence Imaging and Binary Contrast Agent for Computed Tomography Imaging.

Lei P, Zhang P, Yuan Q, Wang Z, Dong L, Song S, Xu X, Liu X, Feng J, Zhang H.

ACS Appl Mater Interfaces. 2015 Dec 2;7(47):26346-54. doi: 10.1021/acsami.5b09990. Epub 2015 Nov 19.


The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy.

Sancey L, Lux F, Kotb S, Roux S, Dufort S, Bianchi A, Crémillieux Y, Fries P, Coll JL, Rodriguez-Lafrasse C, Janier M, Dutreix M, Barberi-Heyob M, Boschetti F, Denat F, Louis C, Porcel E, Lacombe S, Le Duc G, Deutsch E, Perfettini JL, Detappe A, Verry C, Berbeco R, Butterworth KT, McMahon SJ, Prise KM, Perriat P, Tillement O.

Br J Radiol. 2014 Sep;87(1041):20140134. doi: 10.1259/bjr.20140134. Epub 2014 Jul 3. Review.


An imaging-based tumour growth and treatment response model: investigating the effect of tumour oxygenation on radiation therapy response.

Titz B, Jeraj R.

Phys Med Biol. 2008 Sep 7;53(17):4471-88. doi: 10.1088/0031-9155/53/17/001. Epub 2008 Aug 1. Review.


Hyaluronic acid-functionalized bismuth oxide nanoparticles for computed tomography imaging-guided radiotherapy of tumor.

Du F, Lou J, Jiang R, Fang Z, Zhao X, Niu Y, Zou S, Zhang M, Gong A, Wu C.

Int J Nanomedicine. 2017 Aug 21;12:5973-5992. doi: 10.2147/IJN.S130455. eCollection 2017.


Advances in 4D medical imaging and 4D radiation therapy.

Li G, Citrin D, Camphausen K, Mueller B, Burman C, Mychalczak B, Miller RW, Song Y.

Technol Cancer Res Treat. 2008 Feb;7(1):67-81. Review.


A multifunctional nanoplatform for imaging, radiotherapy, and the prediction of therapeutic response.

McQuade C, Al Zaki A, Desai Y, Vido M, Sakhuja T, Cheng Z, Hickey RJ, Joh D, Park SJ, Kao G, Dorsey JF, Tsourkas A.

Small. 2015 Feb 18;11(7):834-43. doi: 10.1002/smll.201401927. Epub 2014 Sep 29.


Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications.

Liu Y, Ai K, Lu L.

Acc Chem Res. 2012 Oct 16;45(10):1817-27. doi: 10.1021/ar300150c. Epub 2012 Sep 5. Review.


[Radiation therapy and medical imaging].

Berges O, Dhermain F, Bidault F.

Bull Cancer. 2010 Feb;97(2):225-31. doi: 10.1684/bdc.2009.1020. French.


Development and application of a multimodal contrast agent for SPECT/CT hybrid imaging.

Criscione JM, Dobrucki LW, Zhuang ZW, Papademetris X, Simons M, Sinusas AJ, Fahmy TM.

Bioconjug Chem. 2011 Sep 21;22(9):1784-92. doi: 10.1021/bc200162r. Epub 2011 Sep 6.


Applications of Nanomaterials in Radiotherapy for Malignant Tumors.

Wang Y, Liang R, Fang F.

J Nanosci Nanotechnol. 2015 Aug;15(8):5487-500. Review.


[The Development of Luminescent Nano-probes on Hard X-ray Irradiation].

Osakada Y.

Yakugaku Zasshi. 2016;136(1):17-20. doi: 10.1248/yakushi.15-00225-3. Review. Japanese.

Supplemental Content

Support Center