Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

Lack of anodic capacitance causes power overshoot in microbial fuel cells.

Peng X, Yu H, Yu H, Wang X.

Bioresour Technol. 2013 Jun;138:353-8. doi: 10.1016/j.biortech.2013.03.187. Epub 2013 Apr 6.

PMID:
23624054
2.

Enhanced performance and capacitance behavior of anode by rolling Fe3O4 into activated carbon in microbial fuel cells.

Peng X, Yu H, Wang X, Zhou Q, Zhang S, Geng L, Sun J, Cai Z.

Bioresour Technol. 2012 Oct;121:450-3. Epub 2012 Jun 17.

PMID:
22863179
3.

Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials.

Zhu X, Tokash JC, Hong Y, Logan BE.

Bioelectrochemistry. 2013 Apr;90:30-5. doi: 10.1016/j.bioelechem.2012.10.004. Epub 2012 Nov 6.

PMID:
23178374
4.

Time behavior and capacitance analysis of nano-Fe3O4 added microbial fuel cells.

Peng X, Yu H, Ai L, Li N, Wang X.

Bioresour Technol. 2013 Sep;144:689-92. doi: 10.1016/j.biortech.2013.07.037. Epub 2013 Jul 15.

PMID:
23899577
5.

The overshoot phenomenon as a function of internal resistance in microbial fuel cells.

Winfield J, Ieropoulos I, Greenman J, Dennis J.

Bioelectrochemistry. 2011 Apr;81(1):22-7. doi: 10.1016/j.bioelechem.2011.01.001. Epub 2011 Jan 14.

PMID:
21296623
6.

Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy.

Lu Z, Girguis P, Liang P, Shi H, Huang G, Cai L, Zhang L.

Bioprocess Biosyst Eng. 2015 Jul;38(7):1325-33. doi: 10.1007/s00449-015-1373-z. Epub 2015 Feb 6.

PMID:
25656699
7.

Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells.

Liang P, Wang H, Xia X, Huang X, Mo Y, Cao X, Fan M.

Biosens Bioelectron. 2011 Feb 15;26(6):3000-4. doi: 10.1016/j.bios.2010.12.002. Epub 2010 Dec 10.

PMID:
21190836
8.

Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes.

Zhu N, Chen X, Zhang T, Wu P, Li P, Wu J.

Bioresour Technol. 2011 Jan;102(1):422-6. doi: 10.1016/j.biortech.2010.06.046. Epub 2010 Jul 1.

PMID:
20594833
9.

Effect of nitrogen addition on the performance of microbial fuel cell anodes.

Saito T, Mehanna M, Wang X, Cusick RD, Feng Y, Hickner MA, Logan BE.

Bioresour Technol. 2011 Jan;102(1):395-8. doi: 10.1016/j.biortech.2010.05.063. Epub 2010 Jun 17.

PMID:
20889061
10.

Novel electrode materials to enhance the bacterial adhesion and increase the power generation in microbial fuel cells (MFCs).

Jiang D, Li B.

Water Sci Technol. 2009;59(3):557-63. doi: 10.2166/wst.2009.007.

PMID:
19214011
11.

Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode.

Yu YY, Guo CX, Yong YC, Li CM, Song H.

Chemosphere. 2015 Dec;140:26-33. doi: 10.1016/j.chemosphere.2014.09.070. Epub 2014 Oct 29.

PMID:
25439129
12.

Microorganism-immobilized carbon nanoparticle anode for microbial fuel cells based on direct electron transfer.

Yuan Y, Zhou S, Xu N, Zhuang L.

Appl Microbiol Biotechnol. 2011 Mar;89(5):1629-35. doi: 10.1007/s00253-010-3013-5. Epub 2010 Dec 1.

PMID:
21120470
13.

Enhanced activated carbon cathode performance for microbial fuel cell by blending carbon black.

Zhang X, Xia X, Ivanov I, Huang X, Logan BE.

Environ Sci Technol. 2014;48(3):2075-81. doi: 10.1021/es405029y. Epub 2014 Jan 24.

PMID:
24422458
14.

Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells.

Wang X, Gao N, Zhou Q, Dong H, Yu H, Feng Y.

Bioresour Technol. 2013 Sep;144:632-6. doi: 10.1016/j.biortech.2013.07.022. Epub 2013 Jul 11.

PMID:
23890977
15.

Convergent development of anodic bacterial communities in microbial fuel cells.

Yates MD, Kiely PD, Call DF, Rismani-Yazdi H, Bibby K, Peccia J, Regan JM, Logan BE.

ISME J. 2012 Nov;6(11):2002-13. doi: 10.1038/ismej.2012.42. Epub 2012 May 10.

16.

Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells.

Hong Y, Call DF, Werner CM, Logan BE.

Biosens Bioelectron. 2011 Oct 15;28(1):71-6. doi: 10.1016/j.bios.2011.06.045. Epub 2011 Jul 23.

PMID:
21831626
17.

Catalysis kinetics and porous analysis of rolling activated carbon-PTFE air-cathode in microbial fuel cells.

Dong H, Yu H, Wang X.

Environ Sci Technol. 2012 Dec 4;46(23):13009-15. doi: 10.1021/es303619a. Epub 2012 Nov 21.

PMID:
23151092
18.

Anodic concentration loss and impedance characteristics in rotating disk electrode microbial fuel cells.

Shen L, Ma J, Song P, Lu Z, Yin Y, Liu Y, Cai L, Zhang L.

Bioprocess Biosyst Eng. 2016 Oct;39(10):1627-34. doi: 10.1007/s00449-016-1638-1. Epub 2016 Jun 9.

PMID:
27282165
19.

Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells.

Xia X, Zhang F, Zhang X, Liang P, Huang X, Logan BE.

ACS Appl Mater Interfaces. 2013 Aug 28;5(16):7862-6. doi: 10.1021/am4018225. Epub 2013 Aug 15.

PMID:
23902951
20.

Anode modification with capacitive materials for a microbial fuel cell: an increase in transient power or stationary power.

Feng C, Lv Z, Yang X, Wei C.

Phys Chem Chem Phys. 2014 Jun 14;16(22):10464-72. doi: 10.1039/c4cp00923a.

PMID:
24728040

Supplemental Content

Support Center