Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.

Janus-core and shell microfibers.

Lee KJ, Park TH, Hwang S, Yoon J, Lahann J.

Langmuir. 2013 May 21;29(20):6181-6. doi: 10.1021/la4009416. Epub 2013 May 9.

PMID:
23617390
2.

Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow.

Choi CH, Yi H, Hwang S, Weitz DA, Lee CS.

Lab Chip. 2011 Apr 21;11(8):1477-83. doi: 10.1039/c0lc00711k. Epub 2011 Mar 10.

PMID:
21390381
3.

Multicompartmental microcylinders.

Bhaskar S, Hitt J, Chang SW, Lahann J.

Angew Chem Int Ed Engl. 2009;48(25):4589-93. doi: 10.1002/anie.200806241.

4.

Design and fabrication of uniquely shaped thiol-ene microfibers using a two-stage hydrodynamic focusing design.

Boyd DA, Shields AR, Howell PB Jr, Ligler FS.

Lab Chip. 2013 Aug 7;13(15):3105-10. doi: 10.1039/c3lc50413a.

PMID:
23756632
5.
6.

Novel PDMS cylindrical channels that generate coaxial flow, and application to fabrication of microfibers and particles.

Kang E, Shin SJ, Lee KH, Lee SH.

Lab Chip. 2010 Jul 21;10(14):1856-61. doi: 10.1039/c002695f. Epub 2010 May 7.

PMID:
20454720
7.

Flexible microfluidic devices supported by biodegradable insertion scaffolds for convection-enhanced neural drug delivery.

Foley CP, Nishimura N, Neeves KB, Schaffer CB, Olbricht WL.

Biomed Microdevices. 2009 Aug;11(4):915-24. doi: 10.1007/s10544-009-9308-6.

PMID:
19353271
8.

Synthesis of titania-silica core-shell microspheres via a controlled interface reaction in a microfluidic device.

Lan W, Li S, Xu J, Luo G.

Langmuir. 2011 Nov 1;27(21):13242-7. doi: 10.1021/la202055f. Epub 2011 Sep 30.

PMID:
21899338
9.

Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid.

Kim C, Chung S, Kim YE, Lee KS, Lee SH, Oh KW, Kang JY.

Lab Chip. 2011 Jan 21;11(2):246-52. doi: 10.1039/c0lc00036a. Epub 2010 Oct 21.

PMID:
20967338
10.

Mechanism of co-nanoprecipitation of organic actives and block copolymers in a microfluidic environment.

Capretto L, Cheng W, Carugo D, Katsamenis OL, Hill M, Zhang X.

Nanotechnology. 2012 Sep 21;23(37):375602. doi: 10.1088/0957-4484/23/37/375602. Epub 2012 Aug 24.

PMID:
22922560
11.

Design of hydrodynamically confined microfluidics: controlling flow envelope and pressure.

Christ KV, Turner KT.

Lab Chip. 2011 Apr 21;11(8):1491-501. doi: 10.1039/c0lc00416b. Epub 2011 Feb 28.

PMID:
21359386
12.

Size-controlled fabrication of polydiacetylene-embedded microfibers on a microfluidic chip.

Yoo I, Song S, Yoon B, Kim JM.

Macromol Rapid Commun. 2012 Aug 14;33(15):1256-61. doi: 10.1002/marc.201200073. Epub 2012 Apr 23.

PMID:
22528762
13.

High-throughput optofluidic platforms for mosaicked microfibers toward multiplex analysis of biomolecules.

Cho S, Shim TS, Yang SM.

Lab Chip. 2012 Oct 7;12(19):3676-9. doi: 10.1039/c2lc40439g.

PMID:
22890815
14.

Modeling of droplet traffic in interconnected microfluidic ladder devices.

Song K, Zhang L, Hu G.

Electrophoresis. 2012 Feb;33(3):411-8. doi: 10.1002/elps.201100320. Epub 2012 Jan 9.

PMID:
22228275
15.

Electro-osmotic flows in a microchannel with patterned hydrodynamic slip walls.

Zhao C, Yang C.

Electrophoresis. 2012 Mar;33(6):899-980. doi: 10.1002/elps.201100564.

PMID:
22528409
16.

Programmable microfluidic patterning of protein gradients on hydrogels.

Allazetta S, Cosson S, Lutolf MP.

Chem Commun (Camb). 2011 Jan 7;47(1):191-3. doi: 10.1039/c0cc02377a. Epub 2010 Sep 8.

PMID:
20830358
17.

Feedback control system simulator for the control of biological cells in microfluidic cross slots and integrated microfluidic systems.

Curtis MD, Sheard GJ, Fouras A.

Lab Chip. 2011 Jul 21;11(14):2343-51. doi: 10.1039/c1lc20191c. Epub 2011 May 25.

PMID:
21611664
18.

Microfluidic generation and selective degradation of biopolymer-based Janus microbeads.

Marquis M, Renard D, Cathala B.

Biomacromolecules. 2012 Apr 9;13(4):1197-203. doi: 10.1021/bm300159u. Epub 2012 Mar 22.

PMID:
22401572
19.

High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces.

Nisisako T, Ando T, Hatsuzawa T.

Lab Chip. 2012 Sep 21;12(18):3426-35. doi: 10.1039/c2lc40245a. Epub 2012 Jul 18.

PMID:
22806835
20.

Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.

Zhuang G, Jensen TG, Kutter JP.

Electrophoresis. 2012 Jul;33(12):1715-22. doi: 10.1002/elps.201100674.

PMID:
22740459

Supplemental Content

Support Center