Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 124

1.

Role of central metabolism in the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens.

Pastor JM, Bernal V, Salvador M, Argandoña M, Vargas C, Csonka L, Sevilla A, Iborra JL, Nieto JJ, Cánovas M.

J Biol Chem. 2013 Jun 14;288(24):17769-81. doi: 10.1074/jbc.M113.470567. Epub 2013 Apr 24.

2.

Understanding the interplay of carbon and nitrogen supply for ectoines production and metabolic overflow in high density cultures of Chromohalobacter salexigens.

Salar-García MJ, Bernal V, Pastor JM, Salvador M, Argandoña M, Nieto JJ, Vargas C, Cánovas M.

Microb Cell Fact. 2017 Feb 8;16(1):23. doi: 10.1186/s12934-017-0643-7.

3.

Involvement of EupR, a response regulator of the NarL/FixJ family, in the control of the uptake of the compatible solutes ectoines by the halophilic bacterium Chromohalobacter salexigens.

Rodríguez-Moya J, Argandoña M, Reina-Bueno M, Nieto JJ, Iglesias-Guerra F, Jebbar M, Vargas C.

BMC Microbiol. 2010 Oct 13;10:256. doi: 10.1186/1471-2180-10-256.

4.

Contribution of RpoS to metabolic efficiency and ectoines synthesis during the osmo- and heat-stress response in the halophilic bacterium Chromohalobacter salexigens.

Salvador M, Argandoña M, Pastor JM, Bernal V, Cánovas M, Csonka LN, Nieto JJ, Vargas C.

Environ Microbiol Rep. 2015 Apr;7(2):301-11. doi: 10.1111/1758-2229.12249. Epub 2015 Jan 23.

PMID:
25417903
5.

Insights into metabolic osmoadaptation of the ectoines-producer bacterium Chromohalobacter salexigens through a high-quality genome scale metabolic model.

Piubeli F, Salvador M, Argandoña M, Nieto JJ, Bernal V, Pastor JM, Cánovas M, Vargas C.

Microb Cell Fact. 2018 Jan 9;17(1):2. doi: 10.1186/s12934-017-0852-0.

6.

Ectoines as compatible solutes and carbon and energy sources for the halophilic bacterium Chromohalobacter salexigens.

Vargas C, Jebbar M, Carrasco R, Blanco C, Calderón MI, Iglesias-Guerra F, Nieto JJ.

J Appl Microbiol. 2006;100(1):98-107.

7.

Role of trehalose in salinity and temperature tolerance in the model halophilic bacterium Chromohalobacter salexigens.

Reina-Bueno M, Argandoña M, Salvador M, Rodríguez-Moya J, Iglesias-Guerra F, Csonka LN, Nieto JJ, Vargas C.

PLoS One. 2012;7(3):e33587. doi: 10.1371/journal.pone.0033587. Epub 2012 Mar 20.

8.

Genome-scale reconstruction of metabolic network for a halophilic extremophile, Chromohalobacter salexigens DSM 3043.

Ates O, Oner ET, Arga KY.

BMC Syst Biol. 2011 Jan 21;5:12. doi: 10.1186/1752-0509-5-12.

9.

Temperature- and salinity-decoupled overproduction of hydroxyectoine by Chromohalobacter salexigens.

Rodríguez-Moya J, Argandoña M, Iglesias-Guerra F, Nieto JJ, Vargas C.

Appl Environ Microbiol. 2013 Feb;79(3):1018-23. doi: 10.1128/AEM.02774-12. Epub 2012 Nov 16.

10.

The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens.

García-Estepa R, Argandoña M, Reina-Bueno M, Capote N, Iglesias-Guerra F, Nieto JJ, Vargas C.

J Bacteriol. 2006 Jun;188(11):3774-84.

11.

Diversity of the ectoines biosynthesis genes in the salt tolerant Streptomyces and evidence for inductive effect of ectoines on their accumulation.

Sadeghi A, Soltani BM, Nekouei MK, Jouzani GS, Mirzaei HH, Sadeghizadeh M.

Microbiol Res. 2014 Sep-Oct;169(9-10):699-708. doi: 10.1016/j.micres.2014.02.005. Epub 2014 Feb 23.

12.

Complex regulation of the synthesis of the compatible solute ectoine in the halophilic bacterium Chromohalobacter salexigens DSM 3043T.

Calderón MI, Vargas C, Rojo F, Iglesias-Guerra F, Csonka LN, Ventosa A, Nieto JJ.

Microbiology. 2004 Sep;150(Pt 9):3051-63.

PMID:
15347763
13.

Contribution of chemical changes in membrane lipids to the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens.

Vargas C, Kallimanis A, Koukkou AI, Calderon MI, Canovas D, Iglesias-Guerra F, Drainas C, Ventosa A, Nieto JJ.

Syst Appl Microbiol. 2005 Sep;28(7):571-81.

PMID:
16156114
14.

Unravelling the adaptation responses to osmotic and temperature stress in Chromohalobacter salexigens, a bacterium with broad salinity tolerance.

Vargas C, Argandoña M, Reina-Bueno M, Rodríguez-Moya J, Fernández-Aunión C, Nieto JJ.

Saline Systems. 2008 Sep 15;4:14. doi: 10.1186/1746-1448-4-14.

15.

The stimulatory effect of mannitol on levan biosynthesis: Lessons from metabolic systems analysis of Halomonas smyrnensis AAD6(T.).

Ates O, Arga KY, Oner ET.

Biotechnol Prog. 2013 Nov-Dec;29(6):1386-97. doi: 10.1002/btpr.1823. Epub 2013 Oct 23.

PMID:
24123998
16.

Interplay of adaptive capabilities of Halomonas sp. AAD12 under salt stress.

Ceylan S, Yilan G, Akbulut BS, Poli A, Kazan D.

J Biosci Bioeng. 2012 Jul;114(1):45-52. doi: 10.1016/j.jbiosc.2012.02.030. Epub 2012 May 9.

PMID:
22575437
17.

Interplay between iron homeostasis and the osmotic stress response in the halophilic bacterium Chromohalobacter salexigens.

Argandoña M, Nieto JJ, Iglesias-Guerra F, Calderón MI, García-Estepa R, Vargas C.

Appl Environ Microbiol. 2010 Jun;76(11):3575-89. doi: 10.1128/AEM.03136-09. Epub 2010 Apr 2.

18.

[Study progress on compatible solutes in moderately halophilic bacteria].

Zhao BS, Yang LF, Wang L, Lu WD, Yang SS.

Wei Sheng Wu Xue Bao. 2007 Oct;47(5):937-41. Review. Chinese.

PMID:
18062278
19.

How to be moderately halophilic with broad salt tolerance: clues from the genome of Chromohalobacter salexigens.

Oren A, Larimer F, Richardson P, Lapidus A, Csonka LN.

Extremophiles. 2005 Aug;9(4):275-9. Epub 2005 May 18.

PMID:
15902510
20.

Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis.

Schatschneider S, Huber C, Neuweger H, Watt TF, Pühler A, Eisenreich W, Wittmann C, Niehaus K, Vorhölter FJ.

Mol Biosyst. 2014 Oct;10(10):2663-76. doi: 10.1039/c4mb00198b.

PMID:
25072918

Supplemental Content

Support Center