Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 269

1.

Secondary B cell receptor diversification is necessary for T cell mediated neuro-inflammation during experimental autoimmune encephalomyelitis.

Galicia G, Boulianne B, Pikor N, Martin A, Gommerman JL.

PLoS One. 2013 Apr 22;8(4):e61478. doi: 10.1371/journal.pone.0061478. Print 2013.

2.

T cell-depleted splenocytes from mice pre-immunized with neuroantigen in incomplete Freund's adjuvant involved in protection from experimental autoimmune encephalomyelitis.

Zheng H, Zhang H, Liu F, Qi Y, Jiang H.

Immunol Lett. 2014 Jan-Feb;157(1-2):38-44. doi: 10.1016/j.imlet.2013.11.001. Epub 2013 Nov 9.

PMID:
24220208
3.

Immune profile of an atypical EAE model in marmoset monkeys immunized with recombinant human myelin oligodendrocyte glycoprotein in incomplete Freund's adjuvant.

Jagessar SA, Heijmans N, Blezer EL, Bauer J, Weissert R, 't Hart BA.

J Neuroinflammation. 2015 Sep 17;12:169. doi: 10.1186/s12974-015-0378-5.

4.

MOG extracellular domain (p1-125) triggers elevated frequency of CXCR3+ CD4+ Th1 cells in the CNS of mice and induces greater incidence of severe EAE.

Mony JT, Khorooshi R, Owens T.

Mult Scler. 2014 Sep;20(10):1312-21. doi: 10.1177/1352458514524086. Epub 2014 Feb 19.

PMID:
24552747
5.

B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity.

Weber MS, Prod'homme T, Patarroyo JC, Molnarfi N, Karnezis T, Lehmann-Horn K, Danilenko DM, Eastham-Anderson J, Slavin AJ, Linington C, Bernard CC, Martin F, Zamvil SS.

Ann Neurol. 2010 Sep;68(3):369-83. doi: 10.1002/ana.22081.

6.

Lymph node-derived donor encephalitogenic CD4+ T cells in C57BL/6 mice adoptive transfer experimental autoimmune encephalomyelitis highly express GM-CSF and T-bet.

Cravens PD, Hussain RZ, Zacharias TE, Ben LH, Herndon E, Vinnakota R, Lambracht-Washington D, Nessler S, Zamvil SS, Eagar TN, Stüve O.

J Neuroinflammation. 2011 Jun 24;8:73. doi: 10.1186/1742-2094-8-73.

7.

Endogenous opioid inhibition of proliferation of T and B cell subpopulations in response to immunization for experimental autoimmune encephalomyelitis.

McLaughlin PJ, McHugh DP, Magister MJ, Zagon IS.

BMC Immunol. 2015 Apr 24;16:24. doi: 10.1186/s12865-015-0093-0.

8.

Chronological changes of CD4(+) and CD8(+) T cell subsets in the experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis.

Sonobe Y, Jin S, Wang J, Kawanokuchi J, Takeuchi H, Mizuno T, Suzumura A.

Tohoku J Exp Med. 2007 Dec;213(4):329-39.

9.

Critical role of activation induced cytidine deaminase in experimental autoimmune encephalomyelitis.

Sun Y, Peng I, Senger K, Hamidzadeh K, Reichelt M, Baca M, Yeh R, Lorenzo MN, Sebrell A, Dela Cruz C, Tam L, Corpuz R, Wu J, Sai T, Roose-Girma M, Warming S, Balazs M, Gonzalez LC, Caplazi P, Martin F, Devoss J, Zarrin AA.

Autoimmunity. 2013 Mar;46(2):157-67. doi: 10.3109/08916934.2012.750301. Epub 2013 Jan 18.

11.

Role of pathogenic T cells and autoantibodies in relapse and progression of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis in LEW.1AV1 rats.

Matsumoto Y, Park IK, Hiraki K, Ohtani S, Kohyama K.

Immunology. 2009 Sep;128(1 Suppl):e250-61. doi: 10.1111/j.1365-2567.2008.02955.x. Epub 2008 Oct 29.

12.

B-cell depletion abrogates T cell-mediated demyelination in an antibody-nondependent common marmoset experimental autoimmune encephalomyelitis model.

Jagessar SA, Heijmans N, Bauer J, Blezer EL, Laman JD, Hellings N, 't Hart BA.

J Neuropathol Exp Neurol. 2012 Aug;71(8):716-28.

13.

Treatment with MOG-DNA vaccines induces CD4+CD25+FoxP3+ regulatory T cells and up-regulates genes with neuroprotective functions in experimental autoimmune encephalomyelitis.

Fissolo N, Costa C, Nurtdinov RN, Bustamante MF, Llombart V, Mansilla MJ, Espejo C, Montalban X, Comabella M.

J Neuroinflammation. 2012 Jun 22;9:139. doi: 10.1186/1742-2094-9-139.

14.

Novel pathogenic epitopes of myelin oligodendrocyte glycoprotein induce experimental autoimmune encephalomyelitis in C57BL/6 mice.

Delarasse C, Smith P, Baker D, Amor S.

Immunology. 2013 Dec;140(4):456-64. doi: 10.1111/imm.12155.

15.

The role of kinin receptors in preventing neuroinflammation and its clinical severity during experimental autoimmune encephalomyelitis in mice.

Dutra RC, Leite DF, Bento AF, Manjavachi MN, Patrício ES, Figueiredo CP, Pesquero JB, Calixto JB.

PLoS One. 2011;6(11):e27875. doi: 10.1371/journal.pone.0027875. Epub 2011 Nov 22.

16.

Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells.

Pöllinger B, Krishnamoorthy G, Berer K, Lassmann H, Bösl MR, Dunn R, Domingues HS, Holz A, Kurschus FC, Wekerle H.

J Exp Med. 2009 Jun 8;206(6):1303-16. doi: 10.1084/jem.20090299. Epub 2009 Jun 1.

17.

Unique B cell responses in B cell-dependent and B cell-independent EAE.

Liu G, Muili KA, Agashe VV, Lyons JA.

Autoimmunity. 2012 May;45(3):199-209. doi: 10.3109/08916934.2011.616558. Epub 2011 Oct 11.

PMID:
21985327
19.

Deletion of the G2A receptor fails to attenuate experimental autoimmune encephalomyelitis.

Osmers I, Smith SS, Parks BW, Yu S, Srivastava R, Wohler JE, Barnum SR, Kabarowski JH.

J Neuroimmunol. 2009 Feb 15;207(1-2):18-23. doi: 10.1016/j.jneuroim.2008.11.008. Epub 2009 Jan 9.

20.

T- and B-cell responses to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis and multiple sclerosis.

Iglesias A, Bauer J, Litzenburger T, Schubart A, Linington C.

Glia. 2001 Nov;36(2):220-34. Review.

PMID:
11596130
Items per page

Supplemental Content

Write to the Help Desk