Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109


Novel role for thioredoxin reductase-2 in mitochondrial redox adaptations to obesogenic diet and exercise in heart and skeletal muscle.

Fisher-Wellman KH, Mattox TA, Thayne K, Katunga LA, La Favor JD, Neufer PD, Hickner RC, Wingard CJ, Anderson EJ.

J Physiol. 2013 Jul 15;591(14):3471-86. doi: 10.1113/jphysiol.2013.254193. Epub 2013 Apr 22.


Protein carbonylation associated to high-fat, high-sucrose diet and its metabolic effects.

Méndez L, Pazos M, Molinar-Toribio E, Sánchez-Martos V, Gallardo JM, Rosa Nogués M, Torres JL, Medina I.

J Nutr Biochem. 2014 Dec;25(12):1243-53. doi: 10.1016/j.jnutbio.2014.06.014. Epub 2014 Sep 6.


High fat, high sucrose diet causes cardiac mitochondrial dysfunction due in part to oxidative post-translational modification of mitochondrial complex II.

Sverdlov AL, Elezaby A, Behring JB, Bachschmid MM, Luptak I, Tu VH, Siwik DA, Miller EJ, Liesa M, Shirihai OS, Pimentel DR, Cohen RA, Colucci WS.

J Mol Cell Cardiol. 2015 Jan;78:165-73. doi: 10.1016/j.yjmcc.2014.07.018. Epub 2014 Aug 7.


A grape polyphenol extract modulates muscle membrane fatty acid composition and lipid metabolism in high-fat--high-sucrose diet-fed rats.

Aoun M, Michel F, Fouret G, Schlernitzauer A, Ollendorff V, Wrutniak-Cabello C, Cristol JP, Carbonneau MA, Coudray C, Feillet-Coudray C.

Br J Nutr. 2011 Aug;106(4):491-501. doi: 10.1017/S0007114511000602. Epub 2011 Apr 20.


Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Diet-Induced Metabolic Heart Disease.

Sverdlov AL, Elezaby A, Qin F, Behring JB, Luptak I, Calamaras TD, Siwik DA, Miller EJ, Liesa M, Shirihai OS, Pimentel DR, Cohen RA, Bachschmid MM, Colucci WS.

J Am Heart Assoc. 2016 Jan 11;5(1). pii: e002555. doi: 10.1161/JAHA.115.002555.


A diet high in fat and sugar reverses anxiety-like behaviour induced by limited nesting in male rats: Impacts on hippocampal markers.

Maniam J, Antoniadis CP, Le V, Morris MJ.

Psychoneuroendocrinology. 2016 Jun;68:202-9. doi: 10.1016/j.psyneuen.2016.03.007. Epub 2016 Mar 11.


Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.

Korge P, Calmettes G, Weiss JN.

Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):514-25. doi: 10.1016/j.bbabio.2015.02.012. Epub 2015 Feb 19.


Effects of increased dietary fat and exercise on skeletal muscle lipid peroxidation and antioxidant capacity in male rats.

Greathouse KL, Samuels M, DiMarco NM, Criswell DS.

Eur J Nutr. 2005 Oct;44(7):429-35. Epub 2005 Jan 7.


High fat/carbohydrate ratio but not total energy intake induces lower striatal dopamine D2/3 receptor availability in diet-induced obesity.

van de Giessen E, la Fleur SE, Eggels L, de Bruin K, van den Brink W, Booij J.

Int J Obes (Lond). 2013 May;37(5):754-7. doi: 10.1038/ijo.2012.128. Epub 2012 Aug 7.


Your mitochondria are what you eat: a high-fat or a high-sucrose diet eliminates metabolic flexibility in isolated mitochondria from rat skeletal muscle.

Jørgensen W, Rud KA, Mortensen OH, Frandsen L, Grunnet N, Quistorff B.

Physiol Rep. 2017 Mar;5(6). pii: e13207. doi: 10.14814/phy2.13207.


The thioredoxin system in aging muscle: key role of mitochondrial thioredoxin reductase in the protective effects of caloric restriction?

Rohrbach S, Gruenler S, Teschner M, Holtz J.

Am J Physiol Regul Integr Comp Physiol. 2006 Oct;291(4):R927-35. Epub 2006 May 4.


Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenols: Involvement of mitochondrial and NAD(P)H oxidase systems.

Feillet-Coudray C, Sutra T, Fouret G, Ramos J, Wrutniak-Cabello C, Cabello G, Cristol JP, Coudray C.

Free Radic Biol Med. 2009 Mar 1;46(5):624-32. doi: 10.1016/j.freeradbiomed.2008.11.020. Epub 2008 Dec 10.


A polyphenol extract modifies quantity but not quality of liver fatty acid content in high-fat-high-sucrose diet-fed rats: possible implication of the sirtuin pathway.

Aoun M, Michel F, Fouret G, Casas F, Jullien M, Wrutniak-Cabello C, Ramos J, Cristol JP, Coudray C, Carbonneau MA, Feillet-Coudray C.

Br J Nutr. 2010 Dec;104(12):1760-70. doi: 10.1017/S0007114510002850. Epub 2010 Aug 2.


Effects of different fatty acid chain lengths on fatty acid oxidation-related protein expression levels in rat skeletal muscles.

Ishizawa R, Masuda K, Sakata S, Nakatani A.

J Oleo Sci. 2015;64(4):415-21. doi: 10.5650/jos.ess14199. Epub 2015 Mar 11.


Acute exercise stress promotes Ref1/Nrf2 signalling and increases mitochondrial antioxidant activity in skeletal muscle.

Wang P, Li CG, Qi Z, Cui D, Ding S.

Exp Physiol. 2016 Mar;101(3):410-20. doi: 10.1113/EP085493. Epub 2016 Jan 23.


Effect of training on antioxidant capacity, tissue damage, and endurance of adult male rats.

Venditti P, Di Meo S.

Int J Sports Med. 1997 Oct;18(7):497-502.


Combination of exercise training and diet restriction normalizes limited exercise capacity and impaired skeletal muscle function in diet-induced diabetic mice.

Suga T, Kinugawa S, Takada S, Kadoguchi T, Fukushima A, Homma T, Masaki Y, Furihata T, Takahashi M, Sobirin MA, Ono T, Hirabayashi K, Yokota T, Tanaka S, Okita K, Tsutsui H.

Endocrinology. 2014 Jan;155(1):68-80. doi: 10.1210/en.2013-1382. Epub 2013 Dec 20.


Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans.

Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, Price JW 3rd, Kang L, Rabinovitch PS, Szeto HH, Houmard JA, Cortright RN, Wasserman DH, Neufer PD.

J Clin Invest. 2009 Mar;119(3):573-81. doi: 10.1172/JCI37048. Epub 2009 Feb 2.


Mitochondria of trained skeletal muscle are protected from deleterious effects of statins.

Bouitbir J, Daussin F, Charles AL, Rasseneur L, Dufour S, Richard R, Piquard F, Geny B, Zoll J.

Muscle Nerve. 2012 Sep;46(3):367-73. doi: 10.1002/mus.23309.


Supplemental Content

Support Center