Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 154

1.

Changes to its peptidoglycan-remodeling enzyme repertoire modulate β-lactam resistance in Pseudomonas aeruginosa.

Cavallari JF, Lamers RP, Scheurwater EM, Matos AL, Burrows LL.

Antimicrob Agents Chemother. 2013 Jul;57(7):3078-84. doi: 10.1128/AAC.00268-13. Epub 2013 Apr 22.

2.

Role of Pseudomonas aeruginosa low-molecular-mass penicillin-binding proteins in AmpC expression, β-lactam resistance, and peptidoglycan structure.

Ropy A, Cabot G, Sánchez-Diener I, Aguilera C, Moya B, Ayala JA, Oliver A.

Antimicrob Agents Chemother. 2015 Jul;59(7):3925-34. doi: 10.1128/AAC.05150-14. Epub 2015 Apr 20.

3.

Loss of membrane-bound lytic transglycosylases increases outer membrane permeability and β-lactam sensitivity in Pseudomonas aeruginosa.

Lamers RP, Nguyen UT, Nguyen Y, Buensuceso RN, Burrows LL.

Microbiologyopen. 2015 Dec;4(6):879-95. doi: 10.1002/mbo3.286. Epub 2015 Sep 15.

4.

NagZ inactivation prevents and reverts beta-lactam resistance, driven by AmpD and PBP 4 mutations, in Pseudomonas aeruginosa.

Zamorano L, Reeve TM, Deng L, Juan C, Moyá B, Cabot G, Vocadlo DJ, Mark BL, Oliver A.

Antimicrob Agents Chemother. 2010 Sep;54(9):3557-63. doi: 10.1128/AAC.00385-10. Epub 2010 Jun 21.

5.

In vivo functional and molecular characterization of the Penicillin-Binding Protein 4 (DacB) of Pseudomonas aeruginosa.

Aguilera Rossi CG, Gómez-Puertas P, Ayala Serrano JA.

BMC Microbiol. 2016 Oct 6;16(1):234.

6.

Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter cloacae Complex.

Guérin F, Isnard C, Cattoir V, Giard JC.

Antimicrob Agents Chemother. 2015 Dec;59(12):7753-61. doi: 10.1128/AAC.01729-15. Epub 2015 Oct 5.

7.

Identification of MupP as a New Peptidoglycan Recycling Factor and Antibiotic Resistance Determinant in Pseudomonas aeruginosa.

Fumeaux C, Bernhardt TG.

MBio. 2017 Mar 28;8(2). pii: e00102-17. doi: 10.1128/mBio.00102-17.

8.

AmpG inactivation restores susceptibility of pan-beta-lactam-resistant Pseudomonas aeruginosa clinical strains.

Zamorano L, Reeve TM, Juan C, Moyá B, Cabot G, Vocadlo DJ, Mark BL, Oliver A.

Antimicrob Agents Chemother. 2011 May;55(5):1990-6. doi: 10.1128/AAC.01688-10. Epub 2011 Feb 28.

9.

Activity of a new cephalosporin, CXA-101 (FR264205), against beta-lactam-resistant Pseudomonas aeruginosa mutants selected in vitro and after antipseudomonal treatment of intensive care unit patients.

Moya B, Zamorano L, Juan C, Pérez JL, Ge Y, Oliver A.

Antimicrob Agents Chemother. 2010 Mar;54(3):1213-7. doi: 10.1128/AAC.01104-09. Epub 2010 Jan 19.

10.
11.
12.

Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal beta-lactam resistance in Pseudomonas aeruginosa.

Asgarali A, Stubbs KA, Oliver A, Vocadlo DJ, Mark BL.

Antimicrob Agents Chemother. 2009 Jun;53(6):2274-82. doi: 10.1128/AAC.01617-08. Epub 2009 Mar 9.

13.

The sentinel role of peptidoglycan recycling in the β-lactam resistance of the Gram-negative Enterobacteriaceae and Pseudomonas aeruginosa.

Fisher JF, Mobashery S.

Bioorg Chem. 2014 Oct;56:41-8. doi: 10.1016/j.bioorg.2014.05.011. Epub 2014 Jun 4. Review. Erratum in: Bioorg Chem. 2014 Aug ;55:78.

14.

WCK 5107 (Zidebactam) and WCK 5153 Are Novel Inhibitors of PBP2 Showing Potent "β-Lactam Enhancer" Activity against Pseudomonas aeruginosa, Including Multidrug-Resistant Metallo-β-Lactamase-Producing High-Risk Clones.

Moya B, Barcelo IM, Bhagwat S, Patel M, Bou G, Papp-Wallace KM, Bonomo RA, Oliver A.

Antimicrob Agents Chemother. 2017 May 24;61(6). pii: e02529-16. doi: 10.1128/AAC.02529-16. Print 2017 Jun.

15.

Impact of AmpC Derepression on Fitness and Virulence: the Mechanism or the Pathway?

Pérez-Gallego M, Torrens G, Castillo-Vera J, Moya B, Zamorano L, Cabot G, Hultenby K, Albertí S, Mellroth P, Henriques-Normark B, Normark S, Oliver A, Juan C.

MBio. 2016 Oct 25;7(5). pii: e01783-16. doi: 10.1128/mBio.01783-16.

16.

Distinct roles of major peptidoglycan recycling enzymes in β-Lactamase production in Shewanella oneidensis.

Yin J, Mao Y, Ju L, Jin M, Sun Y, Jin S, Gao H.

Antimicrob Agents Chemother. 2014 Nov;58(11):6536-43. doi: 10.1128/AAC.03238-14. Epub 2014 Aug 18.

17.

Catalytic spectrum of the penicillin-binding protein 4 of Pseudomonas aeruginosa, a nexus for the induction of β-lactam antibiotic resistance.

Lee M, Hesek D, Blázquez B, Lastochkin E, Boggess B, Fisher JF, Mobashery S.

J Am Chem Soc. 2015 Jan 14;137(1):190-200. doi: 10.1021/ja5111706. Epub 2014 Dec 31.

18.

Providing β-lactams a helping hand: targeting the AmpC β-lactamase induction pathway.

Mark BL, Vocadlo DJ, Oliver A.

Future Microbiol. 2011 Dec;6(12):1415-27. doi: 10.2217/fmb.11.128. Review. Erratum in: Future Microbiol. 2012 Feb;7(2):306.

PMID:
22122439
19.

Differential beta-lactam resistance response driven by ampD or dacB (PBP4) inactivation in genetically diverse Pseudomonas aeruginosa strains.

Zamorano L, Moyá B, Juan C, Oliver A.

J Antimicrob Chemother. 2010 Jul;65(7):1540-2. doi: 10.1093/jac/dkq142. Epub 2010 Apr 30. No abstract available.

PMID:
20435778
20.

Beta-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein.

Moya B, Dötsch A, Juan C, Blázquez J, Zamorano L, Haussler S, Oliver A.

PLoS Pathog. 2009 Mar;5(3):e1000353. doi: 10.1371/journal.ppat.1000353. Epub 2009 Mar 27.

Supplemental Content

Support Center