Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Task-related concurrent but opposite modulations of overlapping functional networks as revealed by spatial ICA.

Xu J, Zhang S, Calhoun VD, Monterosso J, Li CS, Worhunsky PD, Stevens M, Pearlson GD, Potenza MN.

Neuroimage. 2013 Oct 1;79:62-71. doi: 10.1016/j.neuroimage.2013.04.038. Epub 2013 Apr 21.

2.

Opposite modulation of brain functional networks implicated at low vs. high demand of attention and working memory.

Xu J, Calhoun VD, Pearlson GD, Potenza MN.

PLoS One. 2014 Jan 31;9(1):e87078. doi: 10.1371/journal.pone.0087078. eCollection 2014.

3.

Functional network overlap as revealed by fMRI using sICA and its potential relationships with functional heterogeneity, balanced excitation and inhibition, and sparseness of neuron activity.

Xu J, Calhoun VD, Worhunsky PD, Xiang H, Li J, Wall JT, Pearlson GD, Potenza MN.

PLoS One. 2015 Feb 25;10(2):e0117029. doi: 10.1371/journal.pone.0117029. eCollection 2015.

4.

Neural network of speech monitoring overlaps with overt speech production and comprehension networks: a sequential spatial and temporal ICA study.

van de Ven V, Esposito F, Christoffels IK.

Neuroimage. 2009 Oct 1;47(4):1982-91. doi: 10.1016/j.neuroimage.2009.05.057. Epub 2009 May 27.

PMID:
19481159
5.

Neuroanatomic overlap of working memory and spatial attention networks: a functional MRI comparison within subjects.

LaBar KS, Gitelman DR, Parrish TB, Mesulam M.

Neuroimage. 1999 Dec;10(6):695-704.

PMID:
10600415
6.

Characteristics of canonical intrinsic connectivity networks across tasks and monozygotic twin pairs.

Moodie CA, Wisner KM, MacDonald AW 3rd.

Hum Brain Mapp. 2014 Nov;35(11):5532-49. doi: 10.1002/hbm.22568. Epub 2014 Jul 1.

PMID:
24984861
7.

Large-scale functional network overlap is a general property of brain functional organization: Reconciling inconsistent fMRI findings from general-linear-model-based analyses.

Xu J, Potenza MN, Calhoun VD, Zhang R, Yip SW, Wall JT, Pearlson GD, Worhunsky PD, Garrison KA, Moran JM.

Neurosci Biobehav Rev. 2016 Dec;71:83-100. doi: 10.1016/j.neubiorev.2016.08.035. Epub 2016 Aug 31. Review.

8.

Multiple neural networks supporting a semantic task: an fMRI study using independent component analysis.

Wu X, Lu J, Chen K, Long Z, Wang X, Shu H, Li K, Liu Y, Yao L.

Neuroimage. 2009 May 1;45(4):1347-58. doi: 10.1016/j.neuroimage.2008.12.050. Epub 2009 Jan 7.

PMID:
19166946
9.

The Reference Ability Neural Network Study: motivation, design, and initial feasibility analyses.

Stern Y, Habeck C, Steffener J, Barulli D, Gazes Y, Razlighi Q, Shaked D, Salthouse T.

Neuroimage. 2014 Dec;103:139-51. doi: 10.1016/j.neuroimage.2014.09.029. Epub 2014 Sep 20.

10.

Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.

Sweeney JA, Mintun MA, Kwee S, Wiseman MB, Brown DL, Rosenberg DR, Carl JR.

J Neurophysiol. 1996 Jan;75(1):454-68.

PMID:
8822570
11.

Visual target modulation of functional connectivity networks revealed by self-organizing group ICA.

van de Ven V, Bledowski C, Prvulovic D, Goebel R, Formisano E, Di Salle F, Linden DE, Esposito F.

Hum Brain Mapp. 2008 Dec;29(12):1450-61.

PMID:
17990304
12.

fMRI activation in a visual-perception task: network of areas detected using the general linear model and independent components analysis.

Calhoun VD, Adali T, McGinty VB, Pekar JJ, Watson TD, Pearlson GD.

Neuroimage. 2001 Nov;14(5):1080-8.

PMID:
11697939
13.

Distributed BOLD-response in association cortex vector state space predicts reaction time during selective attention.

Musso F, Konrad A, Vucurevic G, Schäffner C, Friedrich B, Frech P, Stoeter P, Winterer G.

Neuroimage. 2006 Feb 15;29(4):1311-8. Epub 2006 Jan 9.

PMID:
16406256
14.

Reorganization of large-scale cognitive networks during automation of imagination of a complex sequential movement.

Sauvage C, De Greef N, Manto M, Jissendi P, Nioche C, Habas C.

J Neuroradiol. 2015 Apr;42(2):115-25. doi: 10.1016/j.neurad.2014.04.001. Epub 2014 Jun 27.

15.

Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks.

Calhoun VD, Kiehl KA, Pearlson GD.

Hum Brain Mapp. 2008 Jul;29(7):828-38. doi: 10.1002/hbm.20581.

16.

Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.

Liljeström M, Stevenson C, Kujala J, Salmelin R.

Neuroimage. 2015 Oct 15;120:75-87. doi: 10.1016/j.neuroimage.2015.07.017. Epub 2015 Jul 11.

17.

Combining spatial independent component analysis with regression to identify the subcortical components of resting-state FMRI functional networks.

Malherbe C, Messé A, Bardinet E, Pélégrini-Issac M, Perlbarg V, Marrelec G, Worbe Y, Yelnik J, Lehéricy S, Benali H.

Brain Connect. 2014 Apr;4(3):181-92. doi: 10.1089/brain.2013.0160.

PMID:
24575752
18.

Functional brain networks underlying detection and integration of disconfirmatory evidence.

Lavigne KM, Metzak PD, Woodward TS.

Neuroimage. 2015 May 15;112:138-51. doi: 10.1016/j.neuroimage.2015.02.043. Epub 2015 Feb 28.

PMID:
25731997
19.

Is a Responsive Default Mode Network Required for Successful Working Memory Task Performance?

Čeko M, Gracely JL, Fitzcharles MA, Seminowicz DA, Schweinhardt P, Bushnell MC.

J Neurosci. 2015 Aug 19;35(33):11595-605. doi: 10.1523/JNEUROSCI.0264-15.2015.

20.

Evidence for anomalous network connectivity during working memory encoding in schizophrenia: an ICA based analysis.

Meda SA, Stevens MC, Folley BS, Calhoun VD, Pearlson GD.

PLoS One. 2009 Nov 19;4(11):e7911. doi: 10.1371/journal.pone.0007911.

Supplemental Content

Support Center