Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

Regulatory interaction of the Corynebacterium glutamicum whc genes in oxidative stress responses.

Lee JY, Kim HJ, Kim ES, Kim P, Kim Y, Lee HS.

J Biotechnol. 2013 Oct 20;168(2):149-54. doi: 10.1016/j.jbiotec.2013.03.017. Epub 2013 Apr 19.

PMID:
23608553
2.

Corynebacterium glutamicum whcB, a stationary phase-specific regulatory gene.

Lee JY, Park JS, Kim HJ, Kim Y, Lee HS.

FEMS Microbiol Lett. 2012 Feb;327(2):103-9. doi: 10.1111/j.1574-6968.2011.02463.x. Epub 2011 Dec 22.

3.

Involvement of the NADH oxidase-encoding noxA gene in oxidative stress responses in Corynebacterium glutamicum.

Park JC, Kim Y, Lee HS.

Appl Microbiol Biotechnol. 2015 Feb;99(3):1363-74. doi: 10.1007/s00253-014-6327-x. Epub 2014 Dec 31.

PMID:
25549620
4.

The role of Corynebacterium glutamicum spiA gene in whcA-mediated oxidative stress gene regulation.

Park JS, Lee JY, Kim HJ, Kim ES, Kim P, Kim Y, Lee HS.

FEMS Microbiol Lett. 2012 Jun;331(1):63-9. doi: 10.1111/j.1574-6968.2012.02554.x. Epub 2012 Apr 20.

5.

The whcA gene plays a negative role in oxidative stress response of Corynebacterium glutamicum.

Choi WW, Park SD, Lee SM, Kim HB, Kim Y, Lee HS.

FEMS Microbiol Lett. 2009 Jan;290(1):32-8. doi: 10.1111/j.1574-6968.2008.01398.x. Epub 2008 Nov 10.

7.

Identification of SpiA that interacts with Corynebacterium glutamicum WhcA using a two-hybrid system.

Park JS, Shin S, Kim ES, Kim P, Kim Y, Lee HS.

FEMS Microbiol Lett. 2011 Sep;322(1):8-14. doi: 10.1111/j.1574-6968.2011.02318.x. Epub 2011 Jul 6.

8.

SpiE interacts with Corynebacterium glutamicum WhcE and is involved in heat and oxidative stress responses.

Park JC, Park JS, Kim Y, Kim P, Kim ES, Lee HS.

Appl Microbiol Biotechnol. 2016 May;100(9):4063-72. doi: 10.1007/s00253-016-7440-9. Epub 2016 Mar 21.

PMID:
26996627
9.

The whcE gene of Corynebacterium glutamicum is important for survival following heat and oxidative stress.

Kim TH, Park JS, Kim HJ, Kim Y, Kim P, Lee HS.

Biochem Biophys Res Commun. 2005 Nov 25;337(3):757-64. Epub 2005 Sep 28.

PMID:
16212936
10.

The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes.

Nakunst D, Larisch C, Hüser AT, Tauch A, Pühler A, Kalinowski J.

J Bacteriol. 2007 Jul;189(13):4696-707. Epub 2007 May 4.

11.
12.

Functional analysis of sigH expression in Corynebacterium glutamicum.

Kim TH, Kim HJ, Park JS, Kim Y, Kim P, Lee HS.

Biochem Biophys Res Commun. 2005 Jun 17;331(4):1542-7.

PMID:
15883048
13.
14.

Negative role of wblA in response to oxidative stress in Streptomyces coelicolor.

Kim JS, Lee HN, Kim P, Lee HS, Kim ES.

J Microbiol Biotechnol. 2012 Jun;22(6):736-41.

15.

Use of In Vitro Transcription System for Analysis of Corynebacterium glutamicum Promoters Recognized by Two Sigma Factors.

Šilar R, Holátko J, Rucká L, Rapoport A, Dostálová H, Kadeřábková P, Nešvera J, Pátek M.

Curr Microbiol. 2016 Sep;73(3):401-8. doi: 10.1007/s00284-016-1077-x. Epub 2016 Jun 6.

PMID:
27270733
16.

Corynebacterium glutamicum sigmaE is involved in responses to cell surface stresses and its activity is controlled by the anti-sigma factor CseE.

Park SD, Youn JW, Kim YJ, Lee SM, Kim Y, Lee HS.

Microbiology. 2008 Mar;154(Pt 3):915-23. doi: 10.1099/mic.0.2007/012690-0.

PMID:
18310037
17.

Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR.

Krömer JO, Bolten CJ, Heinzle E, Schröder H, Wittmann C.

Microbiology. 2008 Dec;154(Pt 12):3917-30. doi: 10.1099/mic.0.2008/021204-0.

PMID:
19047758
18.

Sigma factors and promoters in Corynebacterium glutamicum.

Pátek M, Nešvera J.

J Biotechnol. 2011 Jul 10;154(2-3):101-13. doi: 10.1016/j.jbiotec.2011.01.017. Epub 2011 Jan 26. Review.

PMID:
21277915
19.

Physiological roles of sigma factor SigD in Corynebacterium glutamicum.

Taniguchi H, Busche T, Patschkowski T, Niehaus K, Pátek M, Kalinowski J, Wendisch VF.

BMC Microbiol. 2017 Jul 12;17(1):158. doi: 10.1186/s12866-017-1067-6.

20.

Characterization of OxyR as a negative transcriptional regulator that represses catalase production in Corynebacterium diphtheriae.

Kim JS, Holmes RK.

PLoS One. 2012;7(3):e31709. doi: 10.1371/journal.pone.0031709. Epub 2012 Mar 16.

Supplemental Content

Support Center