Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 184

1.

Chinese hamster ovary K1 host cell enables stable cell line development for antibody molecules which are difficult to express in DUXB11-derived dihydrofolate reductase deficient host cell.

Hu Z, Guo D, Yip SS, Zhan D, Misaghi S, Joly JC, Snedecor BR, Shen AY.

Biotechnol Prog. 2013 Jul-Aug;29(4):980-5. doi: 10.1002/btpr.1730.

PMID:
23606666
2.
3.
4.
5.

Protein reference mapping of dihydrofolate reductase-deficient CHO DG44 cell lines using 2-dimensional electrophoresis.

Lee JS, Park HJ, Kim YH, Lee GM.

Proteomics. 2010 Jun;10(12):2292-302. doi: 10.1002/pmic.200900430.

PMID:
20391528
6.

Short hairpin RNA targeted to dihydrofolate reductase enhances the immunoglobulin G expression in gene-amplified stable Chinese hamster ovary cells.

Wu SC, Hong WW, Liu JH.

Vaccine. 2008 Sep 8;26(38):4969-74. doi: 10.1016/j.vaccine.2008.06.081.

PMID:
18602963
7.
8.

Generation of recombinant CHO(dhfr-) cell lines by single selection for dhfr+ transformants.

Wernicke D, Will H.

Anal Biochem. 1992 May 15;203(1):146-50.

PMID:
1524211
9.

Fed-batch bioreactor performance and cell line stability evaluation of the artificial chromosome expression technology expressing an IgG1 in Chinese hamster ovary cells.

Combs RG, Yu E, Roe S, Piatchek MB, Jones HL, Mott J, Kennard ML, Goosney DL, Monteith D.

Biotechnol Prog. 2011 Jan-Feb;27(1):201-8. doi: 10.1002/btpr.505.

PMID:
21312367
10.

Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.

Fan L, Kadura I, Krebs LE, Hatfield CC, Shaw MM, Frye CC.

Biotechnol Bioeng. 2012 Apr;109(4):1007-15. doi: 10.1002/bit.24365.

PMID:
22068567
11.

Methotrexate metabolism in mutant Chinese hamster ovary cells lacking dihydrofolate reductase.

Joannon P, Whitehead VM, Rosenblatt DS, Vuchich MJ, Beaulieu D.

Biochem Pharmacol. 1987 Apr 1;36(7):1091-7.

PMID:
2436625
12.

Diversity in host clone performance within a Chinese hamster ovary cell line.

O'Callaghan PM, Berthelot ME, Young RJ, Graham JW, Racher AJ, Aldana D.

Biotechnol Prog. 2015 Sep-Oct;31(5):1187-200. doi: 10.1002/btpr.2097.

PMID:
25918883
13.

Engineering selection stringency on expression vector for the production of recombinant human alpha1-antitrypsin using Chinese Hamster ovary cells.

Chin CL, Chin HK, Chin CS, Lai ET, Ng SK.

BMC Biotechnol. 2015 Jun 2;15:44. doi: 10.1186/s12896-015-0145-9.

14.

Transcriptome dynamics of transgene amplification in Chinese hamster ovary cells.

Vishwanathan N, Le H, Jacob NM, Tsao YS, Ng SW, Loo B, Liu Z, Kantardjieff A, Hu WS.

Biotechnol Bioeng. 2014 Mar;111(3):518-28. doi: 10.1002/bit.25117.

PMID:
24108600
16.

The role of acentric chromosome fragments in gene amplification.

Hahn P, Morgan WF, Painter RB.

Somat Cell Mol Genet. 1987 Nov;13(6):597-608.

PMID:
3478815
17.

Expression of chimeric antibody in mammalian cells using dicistronic expression vector.

Xiong KH, Liang QC, Xiong H, Zou CX, Gao GD, Zhao ZW, Zhang H.

Biotechnol Lett. 2005 Nov;27(21):1713-7.

PMID:
16247680
18.

Resilient immortals, characterizing and utilizing Bax/Bak deficient Chinese hamster ovary (CHO) cells for high titer antibody production.

Misaghi S, Qu Y, Snowden A, Chang J, Snedecor B.

Biotechnol Prog. 2013 May-Jun;29(3):727-37. doi: 10.1002/btpr.1722.

PMID:
23596153
19.

A single-plasmid vector for transgene amplification using short hairpin RNA targeting the 3'-UTR of amplifiable dhfr.

Kang SY, Kim YG, Lee HW, Lee EG.

Appl Microbiol Biotechnol. 2015 Dec;99(23):10117-26. doi: 10.1007/s00253-015-6856-y.

PMID:
26245680
20.

Identification and analysis of specific chromosomal region adjacent to exogenous Dhfr-amplified region in Chinese hamster ovary cell genome.

Park JY, Takagi Y, Yamatani M, Honda K, Asakawa S, Shimizu N, Omasa T, Ohtake H.

J Biosci Bioeng. 2010 May;109(5):504-11. doi: 10.1016/j.jbiosc.2009.10.019.

PMID:
20347775

Supplemental Content

Support Center