Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 254

1.

Microwave assisted synthesis, cholinesterase enzymes inhibitory activities and molecular docking studies of new pyridopyrimidine derivatives.

Basiri A, Murugaiyah V, Osman H, Kumar RS, Kia Y, Ali MA.

Bioorg Med Chem. 2013 Jun 1;21(11):3022-31. doi: 10.1016/j.bmc.2013.03.058. Epub 2013 Apr 1.

PMID:
23602518
2.

Cholinesterase inhibitory activity versus aromatic core multiplicity: a facile green synthesis and molecular docking study of novel piperidone embedded thiazolopyrimidines.

Basiri A, Murugaiyah V, Osman H, Kumar RS, Kia Y, Hooda A, Parsons RB.

Bioorg Med Chem. 2014 Jan 15;22(2):906-16. doi: 10.1016/j.bmc.2013.11.020. Epub 2013 Nov 19.

PMID:
24369842
3.

Ionic liquid mediated synthesis and molecular docking study of novel aromatic embedded Schiff bases as potent cholinesterase inhibitors.

Abd Razik BM, Osman H, Basiri A, Salhin A, Kia Y, Ezzat MO, Murugaiyah V.

Bioorg Chem. 2014 Dec;57:162-8. doi: 10.1016/j.bioorg.2014.10.005. Epub 2014 Nov 4.

PMID:
25462993
4.

Synthesis, biological activity and molecular modeling studies on 1H-benzimidazole derivatives as acetylcholinesterase inhibitors.

Alpan AS, Parlar S, Carlino L, Tarikogullari AH, Alptüzün V, Güneş HS.

Bioorg Med Chem. 2013 Sep 1;21(17):4928-37. doi: 10.1016/j.bmc.2013.06.065. Epub 2013 Jul 10.

PMID:
23891231
5.

Efficient Synthesis and Discovery of Schiff Bases as Potent Cholinesterase Inhibitors.

Razik BM, Osman H, Ezzat MO, Basiri A, Salhin A, Kia Y, Murugaiyah V.

Med Chem. 2016;12(6):527-36.

PMID:
26833077
6.

An expedient, ionic liquid mediated multi-component synthesis of novel piperidone grafted cholinesterase enzymes inhibitors and their molecular modeling study.

Basiri A, Murugaiyah V, Osman H, Kumar RS, Kia Y, Awang KB, Ali MA.

Eur J Med Chem. 2013 Sep;67:221-9. doi: 10.1016/j.ejmech.2013.06.054. Epub 2013 Jul 4.

PMID:
23871902
7.
8.

An Efficient Synthesis of bi-Aryl Pyrimidine Heterocycles: Potential New Drug Candidates to Treat Alzheimer's Disease.

Rehman TU, Khan IU, Ashraf M, Tarazi H, Riaz S, Yar M.

Arch Pharm (Weinheim). 2017 Apr;350(3-4). doi: 10.1002/ardp.201600304. Epub 2017 Feb 21.

PMID:
28220522
9.

Accurate prediction of the bound conformation of galanthamine in the active site of Torpedo californica acetylcholinesterase using molecular docking.

Pilger C, Bartolucci C, Lamba D, Tropsha A, Fels G.

J Mol Graph Model. 2001;19(3-4):288-96, 374-8.

PMID:
11449566
10.

The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design.

Greenblatt HM, Guillou C, Guénard D, Argaman A, Botti S, Badet B, Thal C, Silman I, Sussman JL.

J Am Chem Soc. 2004 Dec 1;126(47):15405-11.

PMID:
15563167
11.

Ionic liquid mediated synthesis of mono- and bis-spirooxindole-hexahydropyrrolidines as cholinesterase inhibitors and their molecular docking studies.

Kia Y, Osman H, Kumar RS, Basiri A, Murugaiyah V.

Bioorg Med Chem. 2014 Feb 15;22(4):1318-28. doi: 10.1016/j.bmc.2014.01.002. Epub 2014 Jan 9.

PMID:
24461561
12.

Syntheses, cholinesterases inhibition, and molecular docking studies of pyrido[2,3-b]pyrazine derivatives.

Hameed A, Zehra ST, Shah SJ, Khan KM, Alharthy RD, Furtmann N, Bajorath J, Tahir MN, Iqbal J.

Chem Biol Drug Des. 2015 Nov;86(5):1115-20. doi: 10.1111/cbdd.12579. Epub 2015 May 28.

PMID:
25951978
13.

1,2,3,4-Tetrahydrobenzo[h][1,6]naphthyridines as a new family of potent peripheral-to-midgorge-site inhibitors of acetylcholinesterase: synthesis, pharmacological evaluation and mechanistic studies.

Di Pietro O, Viayna E, Vicente-García E, Bartolini M, Ramón R, Juárez-Jiménez J, Clos MV, Pérez B, Andrisano V, Luque FJ, Lavilla R, Muñoz-Torrero D.

Eur J Med Chem. 2014 Feb 12;73:141-52. doi: 10.1016/j.ejmech.2013.12.008. Epub 2013 Dec 18.

PMID:
24389509
14.

Novel biphenyl bis-sulfonamides as acetyl and butyrylcholinesterase inhibitors: Synthesis, biological evaluation and molecular modeling studies.

Mutahir S, Jończyk J, Bajda M, Khan IU, Khan MA, Ullah N, Ashraf M, Qurat-ul-Ain, Riaz S, Hussain S, Yar M.

Bioorg Chem. 2016 Feb;64:13-20. doi: 10.1016/j.bioorg.2015.11.002. Epub 2015 Nov 10.

PMID:
26595185
15.

Multifunctional novel Diallyl disulfide (DADS) derivatives with β-amyloid-reducing, cholinergic, antioxidant and metal chelating properties for the treatment of Alzheimer's disease.

Manral A, Saini V, Meena P, Tiwari M.

Bioorg Med Chem. 2015 Oct 1;23(19):6389-403. doi: 10.1016/j.bmc.2015.08.024. Epub 2015 Aug 22.

PMID:
26337018
16.

Synthesis of some new 3-coumaranone and coumarin derivatives as dual inhibitors of acetyl- and butyrylcholinesterase.

Alipour M, Khoobi M, Nadri H, Sakhteman A, Moradi A, Ghandi M, Foroumadi A, Shafiee A.

Arch Pharm (Weinheim). 2013 Aug;346(8):577-87. doi: 10.1002/ardp.201300080. Epub 2013 Jul 15.

PMID:
23852709
17.

Chemical and molecular aspects on interactions of galanthamine and its derivatives with cholinesterases.

Gulcan HO, Orhan IE, Sener B.

Curr Pharm Biotechnol. 2015;16(3):252-8. Review.

PMID:
25483718
18.

Synthesis and discovery of highly functionalized mono- and bis-spiro-pyrrolidines as potent cholinesterase enzyme inhibitors.

Kia Y, Osman H, Suresh Kumar R, Basiri A, Murugaiyah V.

Bioorg Med Chem Lett. 2014 Apr 1;24(7):1815-9. doi: 10.1016/j.bmcl.2014.02.019. Epub 2014 Feb 15.

PMID:
24594354
19.

Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors.

Sheng R, Lin X, Zhang J, Chol KS, Huang W, Yang B, He Q, Hu Y.

Bioorg Med Chem. 2009 Sep 15;17(18):6692-8. doi: 10.1016/j.bmc.2009.07.072. Epub 2009 Aug 3.

PMID:
19692250
20.

Synthesis and anticholinesterase activity of new substituted benzo[d]oxazole-based derivatives.

Pouramiri B, Moghimi S, Mahdavi M, Nadri H, Moradi A, Tavakolinejad-Kermani E, Firoozpour L, Asadipour A, Foroumadi A.

Chem Biol Drug Des. 2017 May;89(5):783-789. doi: 10.1111/cbdd.12902. Epub 2016 Dec 11.

PMID:
27863021

Supplemental Content

Support Center