Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

A PLG/HAp composite scaffold for lentivirus delivery.

Boehler RM, Shin S, Fast AG, Gower RM, Shea LD.

Biomaterials. 2013 Jul;34(21):5431-8. doi: 10.1016/j.biomaterials.2013.04.009. Epub 2013 Apr 18.

2.

Polysaccharide-modified scaffolds for controlled lentivirus delivery in vitro and after spinal cord injury.

Thomas AM, Shea LD.

J Control Release. 2013 Sep 28;170(3):421-9. doi: 10.1016/j.jconrel.2013.06.013. Epub 2013 Jun 18.

3.

Lentivirus delivery by adsorption to tissue engineering scaffolds.

Shin S, Salvay DM, Shea LD.

J Biomed Mater Res A. 2010 Jun 15;93(4):1252-9. doi: 10.1002/jbm.a.32619.

4.

In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide).

Zhang P, Hong Z, Yu T, Chen X, Jing X.

Biomaterials. 2009 Jan;30(1):58-70. doi: 10.1016/j.biomaterials.2008.08.041. Epub 2008 Oct 5.

PMID:
18838160
5.

Facile fabrication of poly(L-lactic acid)-grafted hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds by Pickering high internal phase emulsion templates.

Hu Y, Gu X, Yang Y, Huang J, Hu M, Chen W, Tong Z, Wang C.

ACS Appl Mater Interfaces. 2014 Oct 8;6(19):17166-75. doi: 10.1021/am504877h. Epub 2014 Sep 22.

PMID:
25243730
6.

Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA.

Nie H, Wang CH.

J Control Release. 2007 Jul 16;120(1-2):111-21. Epub 2007 Apr 1.

PMID:
17512077
7.

Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres.

Son JS, Appleford M, Ong JL, Wenke JC, Kim JM, Choi SH, Oh DS.

J Control Release. 2011 Jul 30;153(2):133-40. doi: 10.1016/j.jconrel.2011.03.010. Epub 2011 Mar 21.

PMID:
21420453
8.

Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering.

Lao L, Wang Y, Zhu Y, Zhang Y, Gao C.

J Mater Sci Mater Med. 2011 Aug;22(8):1873-84. doi: 10.1007/s10856-011-4374-8. Epub 2011 Jun 18.

PMID:
21681656
9.

Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates.

Hu Y, Ma S, Yang Z, Zhou W, Du Z, Huang J, Yi H, Wang C.

Colloids Surf B Biointerfaces. 2016 Apr 1;140:382-91. doi: 10.1016/j.colsurfb.2016.01.005. Epub 2016 Jan 6.

PMID:
26774574
10.

Phosphatidylserine immobilization of lentivirus for localized gene transfer.

Shin S, Tuinstra HM, Salvay DM, Shea LD.

Biomaterials. 2010 May;31(15):4353-9. doi: 10.1016/j.biomaterials.2010.02.013. Epub 2010 Mar 4.

11.

Layered PLG scaffolds for in vivo plasmid delivery.

Rives CB, des Rieux A, Zelivyanskaya M, Stock SR, Lowe WL Jr, Shea LD.

Biomaterials. 2009 Jan;30(3):394-401. doi: 10.1016/j.biomaterials.2008.09.013. Epub 2008 Oct 17.

12.

Porous zirconia/hydroxyapatite scaffolds for bone reconstruction.

An SH, Matsumoto T, Miyajima H, Nakahira A, Kim KH, Imazato S.

Dent Mater. 2012 Dec;28(12):1221-31. doi: 10.1016/j.dental.2012.09.001. Epub 2012 Sep 25.

PMID:
23018082
13.

Effect of pore structure of macroporous poly(lactide-co-glycolide) scaffolds on the in vivo enrichment of dendritic cells.

Kim J, Li WA, Sands W, Mooney DJ.

ACS Appl Mater Interfaces. 2014 Jun 11;6(11):8505-12. doi: 10.1021/am501376n. Epub 2014 Jun 2.

14.

Gene delivery by surface immobilization of plasmid to tissue-engineering scaffolds.

Salvay DM, Zelivyanskaya M, Shea LD.

Gene Ther. 2010 Sep;17(9):1134-41. doi: 10.1038/gt.2010.79. Epub 2010 May 20.

15.

In vitro mineralization by preosteoblasts in poly(DL-lactide-co-glycolide) inverse opal scaffolds reinforced with hydroxyapatite nanoparticles.

Choi SW, Zhang Y, Thomopoulos S, Xia Y.

Langmuir. 2010 Jul 20;26(14):12126-31. doi: 10.1021/la101519b.

16.

Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery.

Nie H, Soh BW, Fu YC, Wang CH.

Biotechnol Bioeng. 2008 Jan 1;99(1):223-34.

PMID:
17570710
17.

Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences.

Vozzi G, Corallo C, Carta S, Fortina M, Gattazzo F, Galletti M, Giordano N.

J Biomed Mater Res A. 2014 May;102(5):1415-21. doi: 10.1002/jbm.a.34823. Epub 2013 Jun 20.

PMID:
23775901
18.

Prolonged release from PLGA/HAp scaffolds containing drug-loaded PLGA/gelatin composite microspheres.

Tang G, Zhang H, Zhao Y, Li X, Yuan X, Wang M.

J Mater Sci Mater Med. 2012 Feb;23(2):419-29. doi: 10.1007/s10856-011-4493-2. Epub 2011 Nov 18.

PMID:
22095448
19.

In vitro and in vivo evaluation of the developed PLGA/HAp/Zein scaffolds for bone-cartilage interface regeneration.

Lin YX, Ding ZY, Zhou XB, Li ST, Xie de M, Li ZZ, Sun GD.

Biomed Environ Sci. 2015 Jan;28(1):1-12. doi: 10.3967/bes2015.001.

20.

Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model.

Xue D, Zheng Q, Zong C, Li Q, Li H, Qian S, Zhang B, Yu L, Pan Z.

J Biomed Mater Res A. 2010 Jul;94(1):259-70. doi: 10.1002/jbm.a.32691.

PMID:
20166224

Supplemental Content

Support Center