Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 255

1.

Imaging surface nanobubbles at graphite-water interfaces with different atomic force microscopy modes.

Yang CW, Lu YH, Hwang IS.

J Phys Condens Matter. 2013 May 8;25(18):184010. doi: 10.1088/0953-8984/25/18/184010.

PMID:
23598995
2.

The effect of PeakForce tapping mode AFM imaging on the apparent shape of surface nanobubbles.

Walczyk W, Schön PM, Schönherr H.

J Phys Condens Matter. 2013 May 8;25(18):184005. doi: 10.1088/0953-8984/25/18/184005.

PMID:
23598774
3.

Understanding the stability of surface nanobubbles.

Wang S, Liu M, Dong Y.

J Phys Condens Matter. 2013 May 8;25(18):184007. doi: 10.1088/0953-8984/25/18/184007.

PMID:
23598863
4.

Removal of induced nanobubbles from water/graphite interfaces by partial degassing.

Zhang XH, Li G, Maeda N, Hu J.

Langmuir. 2006 Oct 24;22(22):9238-43.

PMID:
17042536
5.

Nanobubbles do not sit alone at the solid-liquid interface.

Peng H, Hampton MA, Nguyen AV.

Langmuir. 2013 May 21;29(20):6123-30. doi: 10.1021/la305138v.

PMID:
23597206
6.

Particle tracking around surface nanobubbles.

Dietrich E, Zandvliet HJ, Lohse D, Seddon JR.

J Phys Condens Matter. 2013 May 8;25(18):184009. doi: 10.1088/0953-8984/25/18/184009.

PMID:
23598947
7.

Closer look at the effect of AFM imaging conditions on the apparent dimensions of surface nanobubbles.

Walczyk W, Schönherr H.

Langmuir. 2013 Jan 15;29(2):620-32. doi: 10.1021/la304193d.

PMID:
23210847
8.

Electrochemically controlled formation and growth of hydrogen nanobubbles.

Zhang L, Zhang Y, Zhang X, Li Z, Shen G, Ye M, Fan C, Fang H, Hu J.

Langmuir. 2006 Sep 12;22(19):8109-13.

PMID:
16952249
9.

Nanobubble assisted nanopatterning utilized for ex situ identification of surface nanobubbles.

Tarábková H, Janda P.

J Phys Condens Matter. 2013 May 8;25(18):184001. doi: 10.1088/0953-8984/25/18/184001.

PMID:
23598572
10.

Cleaning using nanobubbles: defouling by electrochemical generation of bubbles.

Wu Z, Chen H, Dong Y, Mao H, Sun J, Chen S, Craig VS, Hu J.

J Colloid Interface Sci. 2008 Dec 1;328(1):10-4. doi: 10.1016/j.jcis.2008.08.064.

PMID:
18829043
11.

Metastable nanobubbles at the solid-liquid interface due to contact angle hysteresis.

Nishiyama T, Yamada Y, Ikuta T, Takahashi K, Takata Y.

Langmuir. 2015 Jan 27;31(3):982-6. doi: 10.1021/la5036322.

PMID:
25540821
12.

Hydrodynamic effects of the tip movement on surface nanobubbles: a combined tapping mode, lift mode and force volume mode AFM study.

Walczyk W, Hain N, Schönherr H.

Soft Matter. 2014 Aug 28;10(32):5945-54. doi: 10.1039/c4sm01024h.

PMID:
24988375
13.

Characterization of the interaction between AFM tips and surface nanobubbles.

Walczyk W, Schönherr H.

Langmuir. 2014 Jun 24;30(24):7112-26. doi: 10.1021/la501484p.

PMID:
24856074
14.

Dimensions and the profile of surface nanobubbles: tip-nanobubble interactions and nanobubble deformation in atomic force microscopy.

Walczyk W, Schönherr H.

Langmuir. 2014 Oct 14;30(40):11955-65. doi: 10.1021/la502918u.

PMID:
25222759
15.

Nanobubbles and their role in slip and drag.

Maali A, Bhushan B.

J Phys Condens Matter. 2013 May 8;25(18):184003. doi: 10.1088/0953-8984/25/18/184003.

PMID:
23598711
16.

Nanobubble-assisted formation of carbon nanostructures on basal plane highly ordered pyrolytic graphite exposed to aqueous media.

Janda P, Frank O, Bastl Z, Klementová M, Tarábková H, Kavan L.

Nanotechnology. 2010 Mar 5;21(9):095707. doi: 10.1088/0957-4484/21/9/095707.

PMID:
20139490
17.

Electrolytically generated nanobubbles on highly orientated pyrolytic graphite surfaces.

Yang S, Tsai P, Kooij ES, Prosperetti A, Zandvliet HJ, Lohse D.

Langmuir. 2009 Feb 3;25(3):1466-74. doi: 10.1021/la8027513. Erratum in: Langmuir. 2013 May 14;29(19):5937.

PMID:
19123858
18.

Detection of novel gaseous states at the highly oriented pyrolytic graphite-water interface.

Zhang XH, Zhang X, Sun J, Zhang Z, Li G, Fang H, Xiao X, Zeng X, Hu J.

Langmuir. 2007 Feb 13;23(4):1778-83.

PMID:
17279656
19.

Bovine serum albumin film as a template for controlled nanopancake and nanobubble formation: in situ atomic force microscopy and nanolithography study.

Kolivoška V, Gál M, Hromadová M, Lachmanová S, Tarábková H, Janda P, Pospíšil L, Turoňová AM.

Colloids Surf B Biointerfaces. 2012 Jun 1;94:213-9. doi: 10.1016/j.colsurfb.2012.01.028.

PMID:
22341519
20.

Characterization of nanobubbles on hydrophobic surfaces in water.

Yang S, Dammer SM, Bremond N, Zandvliet HJ, Kooij ES, Lohse D.

Langmuir. 2007 Jun 19;23(13):7072-7.

PMID:
17503857
Items per page

Supplemental Content

Support Center