Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Early exposure of bay scallops (Argopecten irradians) to high CO₂ causes a decrease in larval shell growth.

White MM, McCorkle DC, Mullineaux LS, Cohen AL.

PLoS One. 2013 Apr 15;8(4):e61065. doi: 10.1371/journal.pone.0061065. Print 2013.

2.

High resolution microscopy reveals significant impacts of ocean acidification and warming on larval shell development in Laternula elliptica.

Bylenga CH, Cummings VJ, Ryan KG.

PLoS One. 2017 Apr 19;12(4):e0175706. doi: 10.1371/journal.pone.0175706. eCollection 2017.

3.

Larval carry-over effects from ocean acidification persist in the natural environment.

Hettinger A, Sanford E, Hill TM, Lenz EA, Russell AD, Gaylord B.

Glob Chang Biol. 2013 Nov;19(11):3317-26. doi: 10.1111/gcb.12307. Epub 2013 Sep 11.

PMID:
23818389
4.

Functional impacts of ocean acidification in an ecologically critical foundation species.

Gaylord B, Hill TM, Sanford E, Lenz EA, Jacobs LA, Sato KN, Russell AD, Hettinger A.

J Exp Biol. 2011 Aug 1;214(Pt 15):2586-94. doi: 10.1242/jeb.055939.

5.

CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay.

Stumpp M, Wren J, Melzner F, Thorndyke MC, Dupont ST.

Comp Biochem Physiol A Mol Integr Physiol. 2011 Nov;160(3):331-40. doi: 10.1016/j.cbpa.2011.06.022. Epub 2011 Jun 30.

PMID:
21742050
6.

Does seawater acidification affect survival, growth and shell integrity in bivalve juveniles?

Bressan M, Chinellato A, Munari M, Matozzo V, Manci A, Marčeta T, Finos L, Moro I, Pastore P, Badocco D, Marin MG.

Mar Environ Res. 2014 Aug;99:136-48. doi: 10.1016/j.marenvres.2014.04.009. Epub 2014 May 2.

PMID:
24836120
7.

Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae.

Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P, Brunner EL, Gray MW, Miller CA, Gimenez I, Hutchinson G.

PLoS One. 2015 Jun 10;10(6):e0128376. doi: 10.1371/journal.pone.0128376. eCollection 2015.

8.

Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish.

Talmage SC, Gobler CJ.

Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17246-51. doi: 10.1073/pnas.0913804107. Epub 2010 Sep 20.

9.

Environmental salinity modulates the effects of elevated CO2 levels on juvenile hard-shell clams, Mercenaria mercenaria.

Dickinson GH, Matoo OB, Tourek RT, Sokolova IM, Beniash E.

J Exp Biol. 2013 Jul 15;216(Pt 14):2607-18. doi: 10.1242/jeb.082909. Epub 2013 Mar 26.

10.

The early life history of the clam Macoma balthica in a high CO2 world.

Van Colen C, Debusschere E, Braeckman U, Van Gansbeke D, Vincx M.

PLoS One. 2012;7(9):e44655. doi: 10.1371/journal.pone.0044655. Epub 2012 Sep 10.

11.

Growth attenuation with developmental schedule progression in embryos and early larvae of Sterechinus neumayeri raised under elevated CO2.

Yu PC, Sewell MA, Matson PG, Rivest EB, Kapsenberg L, Hofmann GE.

PLoS One. 2013;8(1):e52448. doi: 10.1371/journal.pone.0052448. Epub 2013 Jan 2.

12.

Effects of the dinoflagellate Karenia brevis on larval development in three species of bivalve mollusc from Florida.

Leverone JR, Blake NJ, Pierce RH, Shumway SE.

Toxicon. 2006 Jul;48(1):75-84. Epub 2006 May 5.

PMID:
16814341
13.

CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae.

Stumpp M, Dupont S, Thorndyke MC, Melzner F.

Comp Biochem Physiol A Mol Integr Physiol. 2011 Nov;160(3):320-30. doi: 10.1016/j.cbpa.2011.06.023. Epub 2011 Jul 1.

PMID:
21742049
14.

Pathogenicity of a highly exopolysaccharide-producing Halomonas strain causing epizootics in larval cultures of the Chilean scallop Argopecten purpuratus (Lamarck, 1819).

Rojas R, Miranda CD, Amaro AM.

Microb Ecol. 2009 Jan;57(1):129-39. doi: 10.1007/s00248-008-9401-z. Epub 2008 Jun 12.

PMID:
18548185
15.

Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification.

Martin S, Richier S, Pedrotti ML, Dupont S, Castejon C, Gerakis Y, Kerros ME, Oberhänsli F, Teyssié JL, Jeffree R, Gattuso JP.

J Exp Biol. 2011 Apr 15;214(Pt 8):1357-68. doi: 10.1242/jeb.051169.

16.

Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification.

Ramajo L, Marbà N, Prado L, Peron S, Lardies MA, Rodriguez-Navarro AB, Vargas CA, Lagos NA, Duarte CM.

Glob Chang Biol. 2016 Jun;22(6):2025-37. doi: 10.1111/gcb.13179. Epub 2016 Mar 31.

PMID:
26644007
17.
18.

Uranium in larval shells as a barometer of molluscan ocean acidification exposure.

Frieder CA, Gonzalez JP, Levin LA.

Environ Sci Technol. 2014 Jun 3;48(11):6401-8. doi: 10.1021/es500514j. Epub 2014 May 14.

PMID:
24798367
19.

Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.

Byrne M, Ho MA, Koleits L, Price C, King CK, Virtue P, Tilbrook B, Lamare M.

Glob Chang Biol. 2013 Jul;19(7):2264-75. doi: 10.1111/gcb.12190. Epub 2013 Apr 3.

PMID:
23504957
20.

Effects of ocean acidification on early life stages of shrimp (Pandalus borealis) and mussel (Mytilus edulis).

Bechmann RK, Taban IC, Westerlund S, Godal BF, Arnberg M, Vingen S, Ingvarsdottir A, Baussant T.

J Toxicol Environ Health A. 2011;74(7-9):424-38. doi: 10.1080/15287394.2011.550460.

PMID:
21391089

Supplemental Content

Support Center