Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Ketamine exerts antidepressant effects and reduces IL-1β and IL-6 levels in rat prefrontal cortex and hippocampus.

Yang C, Hong T, Shen J, Ding J, Dai XW, Zhou ZQ, Yang JJ.

Exp Ther Med. 2013 Apr;5(4):1093-1096.

2.

Effects of ketamine on lipopolysaccharide-induced depressive-like behavior and the expression of inflammatory cytokines in the rat prefrontal cortex.

Yang C, Shen J, Hong T, Hu TT, Li ZJ, Zhang HT, Zhang YJ, Zhou ZQ, Yang JJ.

Mol Med Rep. 2013 Sep;8(3):887-90. doi: 10.3892/mmr.2013.1600.

PMID:
23900245
3.

Tramadol pretreatment enhances ketamine-induced antidepressant effects and increases mammalian target of rapamycin in rat hippocampus and prefrontal cortex.

Yang C, Li WY, Yu HY, Gao ZQ, Liu XL, Zhou ZQ, Yang JJ.

J Biomed Biotechnol. 2012;2012:175619. doi: 10.1155/2012/175619.

4.

Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test.

Yang C, Hu YM, Zhou ZQ, Zhang GF, Yang JJ.

Ups J Med Sci. 2013 Mar;118(1):3-8. doi: 10.3109/03009734.2012.724118.

5.

Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex.

Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ.

Eur Psychiatry. 2014 Sep;29(7):419-23. doi: 10.1016/j.eurpsy.2013.10.005.

PMID:
24321772
6.

Akt mediates GSK-3β phosphorylation in the rat prefrontal cortex during the process of ketamine exerting rapid antidepressant actions.

Zhou W, Dong L, Wang N, Shi JY, Yang JJ, Zuo ZY, Zhou ZQ.

Neuroimmunomodulation. 2014;21(4):183-8. doi: 10.1159/000356517.

PMID:
24504086
7.

Inhibition of the L-arginine-nitric oxide pathway mediates the antidepressant effects of ketamine in rats in the forced swimming test.

Zhang GF, Wang N, Shi JY, Xu SX, Li XM, Ji MH, Zuo ZY, Zhou ZQ, Yang JJ.

Pharmacol Biochem Behav. 2013 Sep;110:8-12. doi: 10.1016/j.pbb.2013.05.010.

PMID:
23711590
8.

Sertraline behavioral response associates closer and dose-dependently with cortical rather than hippocampal serotonergic activity in the rat forced swim stress.

Mikail HG, Dalla C, Kokras N, Kafetzopoulos V, Papadopoulou-Daifoti Z.

Physiol Behav. 2012 Sep 10;107(2):201-6. doi: 10.1016/j.physbeh.2012.06.016.

PMID:
22771833
9.

The rapid antidepressant effect of ketamine in rats is associated with down-regulation of pro-inflammatory cytokines in the hippocampus.

Wang N, Yu HY, Shen XF, Gao ZQ, Yang C, Yang JJ, Zhang GF.

Ups J Med Sci. 2015;120(4):241-8. doi: 10.3109/03009734.2015.1060281.

10.
11.

Tramadol reinforces antidepressant effects of ketamine with increased levels of brain-derived neurotrophic factor and tropomyosin-related kinase B in rat hippocampus.

Yang C, Li X, Wang N, Xu S, Yang J, Zhou Z.

Front Med. 2012 Dec;6(4):411-5. doi: 10.1007/s11684-012-0226-2.

PMID:
23124884
12.

Effects of ketamine and N-methyl-D-aspartate on fluoxetine-induced antidepressant-related behavior using the forced swimming test.

Owolabi RA, Akanmu MA, Adeyemi OI.

Neurosci Lett. 2014 Apr 30;566:172-6. doi: 10.1016/j.neulet.2014.01.015.

PMID:
24530380
13.

The activation of adenosine monophosphate-activated protein kinase in rat hippocampus contributes to the rapid antidepressant effect of ketamine.

Xu SX, Zhou ZQ, Li XM, Ji MH, Zhang GF, Yang JJ.

Behav Brain Res. 2013 Sep 15;253:305-9. doi: 10.1016/j.bbr.2013.07.032.

PMID:
23906767
14.

Propofol pretreatment increases antidepressant-like effects induced by acute administration of ketamine in rats receiving forced swimming test.

Wang X, Yang Y, Zhou X, Wu J, Li J, Jiang X, Qu Q, Ou C, Liu L, Zhou S.

Psychiatry Res. 2011 Jan 30;185(1-2):248-53. doi: 10.1016/j.psychres.2010.04.046.

PMID:
20580983
15.

Ketamine and imipramine in the nucleus accumbens regulate histone deacetylation induced by maternal deprivation and are critical for associated behaviors.

Réus GZ, Abelaira HM, dos Santos MA, Carlessi AS, Tomaz DB, Neotti MV, Liranço JL, Gubert C, Barth M, Kapczinski F, Quevedo J.

Behav Brain Res. 2013 Nov 1;256:451-6. doi: 10.1016/j.bbr.2013.08.041.

PMID:
24004850
16.

Loss of phenotype of parvalbumin interneurons in rat prefrontal cortex is involved in antidepressant- and propsychotic-like behaviors following acute and repeated ketamine administration.

Zhou Z, Zhang G, Li X, Liu X, Wang N, Qiu L, Liu W, Zuo Z, Yang J.

Mol Neurobiol. 2015 Apr;51(2):808-19. doi: 10.1007/s12035-014-8798-2.

PMID:
24973145
17.

Nitric oxide involvement in the antidepressant-like effect of ketamine in the Flinders sensitive line rat model of depression.

Liebenberg N, Joca S, Wegener G.

Acta Neuropsychiatr. 2015 Apr;27(2):90-6. doi: 10.1017/neu.2014.39.

PMID:
25491110
18.

Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naïve and "depressed" mice exposed to chronic mild stress.

Franceschelli A, Sens J, Herchick S, Thelen C, Pitychoutis PM.

Neuroscience. 2015 Apr 2;290:49-60. doi: 10.1016/j.neuroscience.2015.01.008.

PMID:
25595985
19.

Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus.

Garcia LS, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J.

Prog Neuropsychopharmacol Biol Psychiatry. 2008 Jan 1;32(1):140-4.

PMID:
17884272
20.

[Inhibition of HCN1 channels by ketamine accounts for its antidepressant actions].

Li J, Chen FF, Chen XD, Zhou C.

Sichuan Da Xue Xue Bao Yi Xue Ban. 2014 Nov;45(6):888-92, 932. Chinese.

PMID:
25571709

Supplemental Content

Support Center