Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 150

1.

Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine.

Liu J, Mei Z, Li N, Qi Y, Xu Y, Shi Y, Wang F, Lei J, Gao N.

J Biol Chem. 2013 Jun 14;288(24):17597-608. doi: 10.1074/jbc.M113.458752.

2.

Structure and mechanism of the hexameric MecA-ClpC molecular machine.

Wang F, Mei Z, Qi Y, Yan C, Hu Q, Wang J, Shi Y.

Nature. 2011 Mar 17;471(7338):331-5. doi: 10.1038/nature09780.

PMID:
21368759
3.

Roles of the two ClpC ATP binding sites in the regulation of competence and the stress response.

Turgay K, Persuh M, Hahn J, Dubnau D.

Mol Microbiol. 2001 Nov;42(3):717-27.

4.

Adaptor protein controlled oligomerization activates the AAA+ protein ClpC.

Kirstein J, Schlothauer T, Dougan DA, Lilie H, Tischendorf G, Mogk A, Bukau B, Turgay K.

EMBO J. 2006 Apr 5;25(7):1481-91.

5.

MecA, an adaptor protein necessary for ClpC chaperone activity.

Schlothauer T, Mogk A, Dougan DA, Bukau B, Turgay K.

Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2306-11.

6.

The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch.

Persuh M, Turgay K, Mandic-Mulec I, Dubnau D.

Mol Microbiol. 1999 Aug;33(4):886-94.

8.
9.

Structural and motional contributions of the Bacillus subtilis ClpC N-domain to adaptor protein interactions.

Kojetin DJ, McLaughlin PD, Thompson RJ, Dubnau D, Prepiak P, Rance M, Cavanagh J.

J Mol Biol. 2009 Apr 3;387(3):639-52. doi: 10.1016/j.jmb.2009.01.046.

10.

trans-Acting arginine residues in the AAA+ chaperone ClpB allosterically regulate the activity through inter- and intradomain communication.

Zeymer C, Fischer S, Reinstein J.

J Biol Chem. 2014 Nov 21;289(47):32965-76. doi: 10.1074/jbc.M114.608828.

11.

Molecular determinants of MecA as a degradation tag for the ClpCP protease.

Mei Z, Wang F, Qi Y, Zhou Z, Hu Q, Li H, Wu J, Shi Y.

J Biol Chem. 2009 Dec 4;284(49):34366-75. doi: 10.1074/jbc.M109.053017.

12.

Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity.

Andersson FI, Blakytny R, Kirstein J, Turgay K, Bukau B, Mogk A, Clarke AK.

J Biol Chem. 2006 Mar 3;281(9):5468-75.

13.

Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine.

Hersch GL, Burton RE, Bolon DN, Baker TA, Sauer RT.

Cell. 2005 Jul 1;121(7):1017-27.

14.
15.

Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor.

Turgay K, Hahn J, Burghoorn J, Dubnau D.

EMBO J. 1998 Nov 16;17(22):6730-8.

16.

Coupling of oligomerization and nucleotide binding in the AAA+ chaperone ClpB.

Werbeck ND, Zeymer C, Kellner JN, Reinstein J.

Biochemistry. 2011 Feb 8;50(5):899-909. doi: 10.1021/bi1018286.

PMID:
21182296
17.
18.

ClpXP, an ATP-powered unfolding and protein-degradation machine.

Baker TA, Sauer RT.

Biochim Biophys Acta. 2012 Jan;1823(1):15-28. doi: 10.1016/j.bbamcr.2011.06.007. Review.

19.
20.

Motor mechanism for protein threading through Hsp104.

Wendler P, Shorter J, Snead D, Plisson C, Clare DK, Lindquist S, Saibil HR.

Mol Cell. 2009 Apr 10;34(1):81-92. doi: 10.1016/j.molcel.2009.02.026.

Items per page

Supplemental Content

Support Center