Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

Glyconanoparticle aided detection of β-amyloid by magnetic resonance imaging and attenuation of β-amyloid induced cytotoxicity.

Kouyoumdjian H, Zhu DC, El-Dakdouki MH, Lorenz K, Chen J, Li W, Huang X.

ACS Chem Neurosci. 2013 Apr 17;4(4):575-84. doi: 10.1021/cn3002015. Epub 2013 Jan 16.

2.

Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer's disease mice using magnetic resonance imaging (MRI).

Cheng KK, Chan PS, Fan S, Kwan SM, Yeung KL, Wáng YX, Chow AH, Wu EX, Baum L.

Biomaterials. 2015 Mar;44:155-72. doi: 10.1016/j.biomaterials.2014.12.005. Epub 2015 Jan 12.

PMID:
25617135
3.

Sialic acid (SA)-modified selenium nanoparticles coated with a high blood-brain barrier permeability peptide-B6 peptide for potential use in Alzheimer's disease.

Yin T, Yang L, Liu Y, Zhou X, Sun J, Liu J.

Acta Biomater. 2015 Oct;25:172-83. doi: 10.1016/j.actbio.2015.06.035. Epub 2015 Jul 2.

PMID:
26143603
4.

Sialic Acid Hydroxamate: A Potential Antioxidant and Inhibitor of Metal-Induced β-Amyloid Aggregates.

Yadav R, Murthy RV, Kikkeri R.

Chembiochem. 2015 Jul 6;16(10):1448-53. doi: 10.1002/cbic.201500162. Epub 2015 Jun 8.

PMID:
25944626
5.

Heparin nanoparticles for β amyloid binding and mitigation of β amyloid associated cytotoxicity.

Wang P, Kouyoumdjian H, Zhu DC, Huang X.

Carbohydr Res. 2015 Mar 20;405:110-4. doi: 10.1016/j.carres.2014.07.020. Epub 2014 Aug 2.

6.

Ferulic acid inhibits the transition of amyloid-β42 monomers to oligomers but accelerates the transition from oligomers to fibrils.

Cui L, Zhang Y, Cao H, Wang Y, Teng T, Ma G, Li Y, Li K, Zhang Y.

J Alzheimers Dis. 2013;37(1):19-28. doi: 10.3233/JAD-130164.

PMID:
23727899
7.

Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antiamyloidgenic activity and specific detection of amyloid-β fibrils.

Skaat H, Corem-Slakmon E, Grinberg I, Last D, Goez D, Mardor Y, Margel S.

Int J Nanomedicine. 2013;8:4063-76. doi: 10.2147/IJN.S52833. Epub 2013 Oct 29.

8.

Liver and brain imaging through dimercaptosuccinic acid-coated iron oxide nanoparticles.

Mejías R, Pérez-Yagüe S, Roca AG, Pérez N, Villanueva A, Cañete M, Mañes S, Ruiz-Cabello J, Benito M, Labarta A, Batlle X, Veintemillas-Verdaguer S, Morales MP, Barber DF, Serna CJ.

Nanomedicine (Lond). 2010 Apr;5(3):397-408. doi: 10.2217/nnm.10.15.

PMID:
20394533
9.

Attenuation of beta-amyloid induced toxicity by sialic acid-conjugated dendrimeric polymers.

Patel D, Henry J, Good T.

Biochim Biophys Acta. 2006 Dec;1760(12):1802-9. Epub 2006 Aug 17.

PMID:
16982154
10.

Longitudinal MRI contrast enhanced monitoring of early tumour development with manganese chloride (MnCl2) and superparamagnetic iron oxide nanoparticles (SPIOs) in a CT1258 based in vivo model of prostate cancer.

Sterenczak KA, Meier M, Glage S, Meyer M, Willenbrock S, Wefstaedt P, Dorsch M, Bullerdiek J, Murua Escobar H, Hedrich H, Nolte I.

BMC Cancer. 2012 Jul 11;12:284.

11.
12.

Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging.

Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X.

Biomaterials. 2013 Nov;34(33):8382-92. doi: 10.1016/j.biomaterials.2013.07.070. Epub 2013 Aug 7.

PMID:
23932250
13.

Uptake of silica nanoparticles: neurotoxicity and Alzheimer-like pathology in human SK-N-SH and mouse neuro2a neuroblastoma cells.

Yang X, He C, Li J, Chen H, Ma Q, Sui X, Tian S, Ying M, Zhang Q, Luo Y, Zhuang Z, Liu J.

Toxicol Lett. 2014 Aug 17;229(1):240-9. doi: 10.1016/j.toxlet.2014.05.009. Epub 2014 May 14.

PMID:
24831964
14.

Folic acid-Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications.

Lin JJ, Chen JS, Huang SJ, Ko JH, Wang YM, Chen TL, Wang LF.

Biomaterials. 2009 Oct;30(28):5114-24. doi: 10.1016/j.biomaterials.2009.06.004. Epub 2009 Jun 26.

PMID:
19560199
15.

Biofunctionalized magnetic nanoparticles for specifically detecting biomarkers of Alzheimer's disease in vitro.

Yang CC, Yang SY, Chieh JJ, Horng HE, Hong CY, Yang HC, Chen KH, Shih BY, Chen TF, Chiu MJ.

ACS Chem Neurosci. 2011 Sep 21;2(9):500-5. doi: 10.1021/cn200028j. Epub 2011 May 30.

16.

Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation.

Kummer MP, Hermes M, Delekarte A, Hammerschmidt T, Kumar S, Terwel D, Walter J, Pape HC, König S, Roeber S, Jessen F, Klockgether T, Korte M, Heneka MT.

Neuron. 2011 Sep 8;71(5):833-44. doi: 10.1016/j.neuron.2011.07.001.

17.

Amyloid-dependent triosephosphate isomerase nitrotyrosination induces glycation and tau fibrillation.

Guix FX, Ill-Raga G, Bravo R, Nakaya T, de Fabritiis G, Coma M, Miscione GP, Villà-Freixa J, Suzuki T, Fernàndez-Busquets X, Valverde MA, de Strooper B, Muñoz FJ.

Brain. 2009 May;132(Pt 5):1335-45. doi: 10.1093/brain/awp023. Epub 2009 Feb 27.

PMID:
19251756
18.

MR and iron magnetic nanoparticles. Imaging opportunities in preclinical and translational research.

Neumaier CE, Baio G, Ferrini S, Corte G, Daga A.

Tumori. 2008 Mar-Apr;94(2):226-33. Review.

20.

Effect of nanoparticles binding β-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages.

Orlando A, Re F, Sesana S, Rivolta I, Panariti A, Brambilla D, Nicolas J, Couvreur P, Andrieux K, Masserini M, Cazzaniga E.

Int J Nanomedicine. 2013;8:1335-47. doi: 10.2147/IJN.S40297. Epub 2013 Apr 15.

Supplemental Content

Support Center