Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 288


Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation.

Śledź P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, Förster F, Baumeister W.

Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7264-9. doi: 10.1073/pnas.1305782110.


Stable incorporation of ATPase subunits into 19 S regulatory particle of human proteasome requires nucleotide binding and C-terminal tails.

Lee SH, Moon JH, Yoon SK, Yoon JB.

J Biol Chem. 2012 Mar 16;287(12):9269-79. doi: 10.1074/jbc.M111.316208.


Conformational switching of the 26S proteasome enables substrate degradation.

Matyskiela ME, Lander GC, Martin A.

Nat Struct Mol Biol. 2013 Jul;20(7):781-8. doi: 10.1038/nsmb.2616.


An asymmetric interface between the regulatory and core particles of the proteasome.

Tian G, Park S, Lee MJ, Huck B, McAllister F, Hill CP, Gygi SP, Finley D.

Nat Struct Mol Biol. 2011 Oct 30;18(11):1259-67. doi: 10.1038/nsmb.2147.


A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal.

Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM.

Nature. 2002 Apr 18;416(6882):763-7.


Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome.

Unverdorben P, Beck F, Śledź P, Schweitzer A, Pfeifer G, Plitzko JM, Baumeister W, Förster F.

Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5544-9. doi: 10.1073/pnas.1403409111.


Reconfiguration of the proteasome during chaperone-mediated assembly.

Park S, Li X, Kim HM, Singh CR, Tian G, Hoyt MA, Lovell S, Battaile KP, Zolkiewski M, Coffino P, Roelofs J, Cheng Y, Finley D.

Nature. 2013 May 23;497(7450):512-6. doi: 10.1038/nature12123.


Proteasomes and their associated ATPases: a destructive combination.

Smith DM, Benaroudj N, Goldberg A.

J Struct Biol. 2006 Oct;156(1):72-83. Review.


Proteasomal AAA-ATPases: structure and function.

Bar-Nun S, Glickman MH.

Biochim Biophys Acta. 2012 Jan;1823(1):67-82. doi: 10.1016/j.bbamcr.2011.07.009. Review.


ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle.

Smith DM, Fraga H, Reis C, Kafri G, Goldberg AL.

Cell. 2011 Feb 18;144(4):526-38. doi: 10.1016/j.cell.2011.02.005.


Nucleotide-dependent conformational changes and assembly of the AAA ATPase SKD1/VPS4B.

Inoue M, Kamikubo H, Kataoka M, Kato R, Yoshimori T, Wakatsuki S, Kawasaki M.

Traffic. 2008 Dec;9(12):2180-9. doi: 10.1111/j.1600-0854.2008.00831.x.


Complete subunit architecture of the proteasome regulatory particle.

Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A.

Nature. 2012 Jan 11;482(7384):186-91. doi: 10.1038/nature10774.


Bipartite determinants mediate an evolutionarily conserved interaction between Cdc48 and the 20S peptidase.

Barthelme D, Sauer RT.

Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3327-32. doi: 10.1073/pnas.1300408110.


Structure of an endogenous yeast 26S proteasome reveals two major conformational states.

Luan B, Huang X, Wu J, Mei Z, Wang Y, Xue X, Yan C, Wang J, Finley DJ, Shi Y, Wang F.

Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2642-7. doi: 10.1073/pnas.1601561113.


An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome.

Förster F, Lasker K, Beck F, Nickell S, Sali A, Baumeister W.

Biochem Biophys Res Commun. 2009 Oct 16;388(2):228-33. doi: 10.1016/j.bbrc.2009.07.145.


Structural basis for specific recognition of Rpt1p, an ATPase subunit of 26 S proteasome, by proteasome-dedicated chaperone Hsm3p.

Takagi K, Kim S, Yukii H, Ueno M, Morishita R, Endo Y, Kato K, Tanaka K, Saeki Y, Mizushima T.

J Biol Chem. 2012 Apr 6;287(15):12172-82. doi: 10.1074/jbc.M112.345876.


ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function.

Kim YC, Snoberger A, Schupp J, Smith DM.

Nat Commun. 2015 Oct 14;6:8520. doi: 10.1038/ncomms9520.


Supplemental Content

Support Center