Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 187

1.

Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements.

Fares S, Vargas R, Detto M, Goldstein AH, Karlik J, Paoletti E, Vitale M.

Glob Chang Biol. 2013 Aug;19(8):2427-43. doi: 10.1111/gcb.12222. Epub 2013 May 14.

PMID:
23589473
2.

Exposure to moderate concentrations of tropospheric ozone impairs tree stomatal response to carbon dioxide.

Onandia G, Olsson AK, Barth S, King JS, Uddling J.

Environ Pollut. 2011 Oct;159(10):2350-4. doi: 10.1016/j.envpol.2011.06.001. Epub 2011 Jul 5.

PMID:
21733606
3.

Ozone deposition to an orange orchard: Partitioning between stomatal and non-stomatal sinks.

Fares S, Weber R, Park JH, Gentner D, Karlik J, Goldstein AH.

Environ Pollut. 2012 Oct;169:258-66. doi: 10.1016/j.envpol.2012.01.030. Epub 2012 Feb 15.

PMID:
22341155
4.

The influence of climate change on stomatal ozone flux to a mountain Norway spruce forest.

Zapletal M, Pretel J, Chroust P, Cudlín P, Edwards-Jonášová M, Urban O, Pokorný R, Czerný R, Hůnová I.

Environ Pollut. 2012 Oct;169:267-73. doi: 10.1016/j.envpol.2012.05.008. Epub 2012 Jun 6.

PMID:
22682306
5.

Validation of the stomatal flux approach for the assessment of ozone visible injury in young forest trees. Results from the TOP (transboundary ozone pollution) experiment at Curno, Italy.

Gerosa G, Marzuoli R, Desotgiu R, Bussotti F, Ballarin-Denti A.

Environ Pollut. 2009 May;157(5):1497-505. doi: 10.1016/j.envpol.2008.09.042. Epub 2008 Nov 18.

PMID:
19019512
6.
7.

Ozone fluxes over various plant ecosystems in Italy: a review.

Cieslik S.

Environ Pollut. 2009 May;157(5):1487-96. doi: 10.1016/j.envpol.2008.09.050. Epub 2008 Nov 21. Review.

PMID:
19027210
9.

An evaluation of ozone exposure metrics for a seasonally drought-stressed ponderosa pine ecosystem.

Panek JA, Kurpius MR, Goldstein AH.

Environ Pollut. 2002;117(1):93-100.

PMID:
11843543
10.

New flux based dose-response relationships for ozone for European forest tree species.

Büker P, Feng Z, Uddling J, Briolat A, Alonso R, Braun S, Elvira S, Gerosa G, Karlsson PE, Le Thiec D, Marzuoli R, Mills G, Oksanen E, Wieser G, Wilkinson M, Emberson LD.

Environ Pollut. 2015 Nov;206:163-74. doi: 10.1016/j.envpol.2015.06.033. Epub 2015 Jul 10.

PMID:
26164201
11.

An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests.

Sicard P, De Marco A, Dalstein-Richier L, Tagliaferro F, Renou C, Paoletti E.

Sci Total Environ. 2016 Jan 15;541:729-41. doi: 10.1016/j.scitotenv.2015.09.113. Epub 2015 Oct 2.

PMID:
26437347
12.

Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests.

Anav A, De Marco A, Proietti C, Alessandri A, Dell'Aquila A, Cionni I, Friedlingstein P, Khvorostyanov D, Menut L, Paoletti E, Sicard P, Sitch S, Vitale M.

Glob Chang Biol. 2016 Apr;22(4):1608-27. doi: 10.1111/gcb.13138. Epub 2016 Jan 6.

PMID:
26492093
13.

Modelling critical levels of ozone for the forested area of Austria. Modifications of the AOT40 concept.

Loibl W, Bolhàr-Nordenkampf HR, Herman F, Smidt S.

Environ Sci Pollut Res Int. 2004;11(3):171-80.

PMID:
15259700
14.

Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.

Uddling J, Teclaw RM, Pregitzer KS, Ellsworth DS.

Tree Physiol. 2009 Nov;29(11):1367-80. doi: 10.1093/treephys/tpp070. Epub 2009 Sep 22.

PMID:
19773339
15.

Structural and physiological responses to ozone in Manna ash (Fraxinus ornus L.) leaves of seedlings and mature trees under controlled and ambient conditions.

Paoletti E, Contran N, Bernasconi P, Günthardt-Goerg MS, Vollenweider P.

Sci Total Environ. 2009 Feb 15;407(5):1631-43. doi: 10.1016/j.scitotenv.2008.11.061. Epub 2009 Jan 10. Erratum in: Sci Total Environ. 2010 Mar 15;408(8):2013. Corrected and republished in: Sci Total Environ. 2010 Mar 15;408(8):2014-24.

PMID:
19136142
16.

Tropospheric ozone effects on chemical composition and decomposition rate of Quercus ilex L. leaves.

Baldantoni D, Fagnano M, Alfani A.

Sci Total Environ. 2011 Feb 1;409(5):979-84. doi: 10.1016/j.scitotenv.2010.11.022. Epub 2010 Dec 16.

PMID:
21167557
17.

Ozone flux over a Norway spruce forest and correlation with net ecosystem production.

Zapletal M, Cudlín P, Chroust P, Urban O, Pokorný R, Edwards-Jonášová M, Czerný R, Janouš D, Taufarová K, Večeřa Z, Mikuška P, Paoletti E.

Environ Pollut. 2011 May;159(5):1024-34. doi: 10.1016/j.envpol.2010.11.037. Epub 2010 Dec 22.

PMID:
21177010
18.

Comparison of seasonal variations of ozone exposure and fluxes in a Mediterranean Holm oak forest between the exceptionally dry 2003 and the following year.

Gerosa G, Finco A, Mereu S, Vitale M, Manes F, Denti AB.

Environ Pollut. 2009 May;157(5):1737-44. doi: 10.1016/j.envpol.2007.11.025. Epub 2008 Jan 3.

PMID:
18180087
19.

The effects of tropospheric ozone on net primary productivity and implications for climate change.

Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD.

Annu Rev Plant Biol. 2012;63:637-61. doi: 10.1146/annurev-arplant-042110-103829. Epub 2012 Feb 9. Review.

PMID:
22404461
20.

Concentrations, deposition, and effects of nitrogenous pollutants in selected California ecosystems.

Bytnerowicz A, Padgett PE, Parry SD, Fenn ME, Arbaugh MJ.

ScientificWorldJournal. 2001 Nov 28;1 Suppl 2:304-11.

Supplemental Content

Support Center