Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Harnessing Candida tenuis and Pichia stipitis in whole-cell bioreductions of o-chloroacetophenone: stereoselectivity, cell activity, in situ substrate supply and product removal.

Gruber C, Krahulec S, Nidetzky B, Kratzer R.

Biotechnol J. 2013 Jun;8(6):699-708. doi: 10.1002/biot.201200322. Epub 2013 May 13.

PMID:
23589466
2.

Bioprocess design guided by in situ substrate supply and product removal: process intensification for synthesis of (S)-1-(2-chlorophenyl)ethanol.

Schmölzer K, Mädje K, Nidetzky B, Kratzer R.

Bioresour Technol. 2012 Mar;108:216-23. doi: 10.1016/j.biortech.2012.01.009. Epub 2012 Jan 10.

3.

Scale-up and intensification of (S)-1-(2-chlorophenyl)ethanol bioproduction: economic evaluation of whole cell-catalyzed reduction of o-chloroacetophenone.

Eixelsberger T, Woodley JM, Nidetzky B, Kratzer R.

Biotechnol Bioeng. 2013 Aug;110(8):2311-5. doi: 10.1002/bit.24896. Epub 2013 Mar 31.

PMID:
23475609
4.

Enzyme identification and development of a whole-cell biotransformation for asymmetric reduction of o-chloroacetophenone.

Kratzer R, Pukl M, Egger S, Vogl M, Brecker L, Nidetzky B.

Biotechnol Bioeng. 2011 Apr;108(4):797-803. doi: 10.1002/bit.23002. Epub 2010 Nov 26.

PMID:
21404254
5.
6.
7.

Asymmetric reduction of o-chloroacetophenone with Candida pseudotropicalis 104.

Xie Q, Wu J, Xu G, Yang L.

Biotechnol Prog. 2006 Sep-Oct;22(5):1301-4.

PMID:
17022667
9.
10.

Xylitol production by recombinant Saccharomyces cerevisiae expressing the Pichia stipitis and Candida shehatae XYL1 genes.

Govinden R, Pillay B, van Zyl WH, Pillay D.

Appl Microbiol Biotechnol. 2001 Jan;55(1):76-80.

PMID:
11234962
11.

The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.

Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hägerdal B, Gorwa-Grauslund MF.

Biotechnol Bioeng. 2006 Mar 5;93(4):665-73.

PMID:
16372361
12.

Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis.

Verduyn C, Van Kleef R, Frank J, Schreuder H, Van Dijken JP, Scheffers WA.

Biochem J. 1985 Mar 15;226(3):669-77.

13.

[Activity of the key enzymes in xylose-assimilating yeasts at different rates of oxygen transfer to the fermentation medium].

Iablochkova EN, Bolotnikova OI, Mikhaĭlova NP, Nemova NN, Ginak AI.

Mikrobiologiia. 2004 Mar-Apr;73(2):163-8. Russian.

PMID:
15198025
14.

Engineering Escherichia coli for xylitol production from glucose-xylose mixtures.

Cirino PC, Chin JW, Ingram LO.

Biotechnol Bioeng. 2006 Dec 20;95(6):1167-76.

PMID:
16838379
15.

Two-step process using immobilized Saccharomyces cerevisiae and Pichia stipitis for ethanol production from Ulva pertusa Kjellman hydrolysate.

Lee SE, Kim YO, Choi WY, Kang DH, Lee HY, Jung KH.

J Microbiol Biotechnol. 2013 Oct 28;23(10):1434-44.

16.

Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form.

Pratter SM, Eixelsberger T, Nidetzky B.

Bioresour Technol. 2015 Dec;198:732-8. doi: 10.1016/j.biortech.2015.09.046. Epub 2015 Sep 25.

PMID:
26452180
17.

A heterologous reductase affects the redox balance of recombinant Saccharomyces cerevisiae.

Meinander N, Zacchi G, Hahn-Hägerdal B.

Microbiology. 1996 Jan;142 ( Pt 1):165-72.

PMID:
8581161
18.

Rules for biocatalyst and reaction engineering to implement effective, NAD(P)H-dependent, whole cell bioreductions.

Kratzer R, Woodley JM, Nidetzky B.

Biotechnol Adv. 2015 Dec;33(8):1641-52. doi: 10.1016/j.biotechadv.2015.08.006. Epub 2015 Sep 3. Review.

19.

Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.

Almeida JR, Bertilsson M, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF.

Appl Microbiol Biotechnol. 2009 Sep;84(4):751-61. doi: 10.1007/s00253-009-2053-1. Epub 2009 Jun 9.

PMID:
19506862
20.

[Saccharomyces cerevisiae B5 efficiently and stereoselectively reduces 2'-chloroacetophenone to R-2'-chloro-1-phenylethanol in the presence of 5% ethanol].

Ou ZM, Wu JP, Yang LR, Cen PL, Liu L, Qi N.

Sheng Wu Gong Cheng Xue Bao. 2003 Mar;19(2):206-11. Chinese.

PMID:
15966323

Supplemental Content

Support Center