Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.
2.

Diverting non-haem iron catalysed aliphatic C-H hydroxylations towards desaturations.

Bigi MA, Reed SA, White MC.

Nat Chem. 2011 Mar;3(3):216-22. doi: 10.1038/nchem.967. Epub 2011 Jan 23.

PMID:
21336327
3.

The cholesterol-raising factor from coffee beans, cafestol, as an agonist ligand for the farnesoid and pregnane X receptors.

Ricketts ML, Boekschoten MV, Kreeft AJ, Hooiveld GJ, Moen CJ, Müller M, Frants RR, Kasanmoentalib S, Post SM, Princen HM, Porter JG, Katan MB, Hofker MH, Moore DD.

Mol Endocrinol. 2007 Jul;21(7):1603-16. Epub 2007 Apr 24.

PMID:
17456796
4.

The coffee diterpene cafestol increases plasma triacylglycerol by increasing the production rate of large VLDL apolipoprotein B in healthy normolipidemic subjects.

de Roos B, Caslake MJ, Stalenhoef AF, Bedford D, Demacker PN, Katan MB, Packard CJ.

Am J Clin Nutr. 2001 Jan;73(1):45-52.

5.

Absorption, distribution, and biliary excretion of cafestol, a potent cholesterol-elevating compound in unfiltered coffees, in mice.

Cruchten ST, de Waart DR, Kunne C, Hooiveld GJ, Boekschoten MV, Katan MB, Elferink RP, Witkamp RF.

Drug Metab Dispos. 2010 Apr;38(4):635-40. doi: 10.1124/dmd.109.030213. Epub 2010 Jan 4.

6.

The role of epoxidation and electrophile-responsive element-regulated gene transcription in the potentially beneficial and harmful effects of the coffee components cafestol and kahweol.

van Cruchten ST, de Haan LH, Mulder PP, Kunne C, Boekschoten MV, Katan MB, Aarts JM, Witkamp RF.

J Nutr Biochem. 2010 Aug;21(8):757-63. doi: 10.1016/j.jnutbio.2009.05.001. Epub 2009 Jul 18.

PMID:
19616929
7.

From DNA to catalysis: a thymine-acetate ligated non-heme iron(III) catalyst for oxidative activation of aliphatic C-H bonds.

Al-hunaiti A, Räisänen M, Repo T.

Chem Commun (Camb). 2016 Feb 4;52(10):2043-6. doi: 10.1039/c5cc07597a.

PMID:
26685988
8.
9.

Aliphatic C-C Bond Cleavage of α-Hydroxy Ketones by Non-Heme Iron(II) Complexes: Mechanistic Insight into the Reaction Catalyzed by 2,4'-Dihydroxyacetophenone Dioxygenase.

Rahaman R, Paria S, Paine TK.

Inorg Chem. 2015 Nov 16;54(22):10576-86. doi: 10.1021/acs.inorgchem.5b01235. Epub 2015 Nov 4.

PMID:
26536067
10.

Evaluation of electron-withdrawing group effects on heme binding in designed proteins: implications for heme a in cytochrome c oxidase.

Zhuang J, Amoroso JH, Kinloch R, Dawson JH, Baldwin MJ, Gibney BR.

Inorg Chem. 2006 Jun 12;45(12):4685-94.

PMID:
16749832
11.

Differential reactivity of purified bioactive coffee furans, cafestol and kahweol, with acidic nitrite: product characterization and factors controlling nitrosation versus ring-opening pathways.

De Lucia M, Panzella L, Melck D, Giudicianni I, Motta A, Napolitano A, d'Ischia M.

Chem Res Toxicol. 2009 Dec;22(12):1922-8. doi: 10.1021/tx900224x.

PMID:
19894707
12.

Chemoselective and biomimetic hydroxylation of hydrocarbons by non-heme micro-oxo-bridged diiron(III) catalysts using m-CPBA as oxidant.

Mayilmurugan R, Stoeckli-Evans H, Suresh E, Palaniandavar M.

Dalton Trans. 2009 Jul 14;(26):5101-14. doi: 10.1039/b820771b. Epub 2009 May 15.

PMID:
19562169
13.

Cafestol, a coffee-specific diterpene, induces peripheral antinociception mediated by endogenous opioid peptides.

Guzzo LS, Perez AC, Romero TR, Azevedo AO, Duarte ID.

Clin Exp Pharmacol Physiol. 2012 May;39(5):412-6. doi: 10.1111/j.1440-1681.2012.05689.x.

PMID:
22332877
14.

Detection and localization of markers of oxidative stress by in situ methods: application in the study of Alzheimer disease.

Moreira PI, Sayre LM, Zhu X, Nunomura A, Smith MA, Perry G.

Methods Mol Biol. 2010;610:419-34. doi: 10.1007/978-1-60327-029-8_25.

PMID:
20013193
15.

μ-Nitrido Diiron Macrocyclic Platform: Particular Structure for Particular Catalysis.

Afanasiev P, Sorokin AB.

Acc Chem Res. 2016 Apr 19;49(4):583-93. doi: 10.1021/acs.accounts.5b00458. Epub 2016 Mar 11.

PMID:
26967682
16.

The hypercholesterolemic effect of cafestol in coffee oil in gerbils and rats.

Terpstra AH, Katan MB, Weusten-van der Wouw MP, de Roos B, Beynen AC.

J Nutr Biochem. 2000 Jun;11(6):311-7.

PMID:
11002126
17.

Acceptor side effects on the electron transfer at cryogenic temperatures in intact photosystem II.

Bao H, Zhang C, Kawakami K, Ren Y, Shen JR, Zhao J.

Biochim Biophys Acta. 2008 Sep;1777(9):1109-15. doi: 10.1016/j.bbabio.2008.04.044. Epub 2008 May 9.

18.

Separate effects of the coffee diterpenes cafestol and kahweol on serum lipids and liver aminotransferases.

Urgert R, Essed N, van der Weg G, Kosmeijer-Schuil TG, Katan MB.

Am J Clin Nutr. 1997 Feb;65(2):519-24.

PMID:
9022539
19.

Considerations on the mechanism of action of artemisinin antimalarials: part 1--the 'carbon radical' and 'heme' hypotheses.

Haynes RK, Cheu KW, N'Da D, Coghi P, Monti D.

Infect Disord Drug Targets. 2013 Aug;13(4):217-77. Review.

PMID:
24304352
20.

Supplemental Content

Support Center