Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 138

1.

Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis.

Petri RM, Schwaiger T, Penner GB, Beauchemin KA, Forster RJ, McKinnon JJ, McAllister TA.

Appl Environ Microbiol. 2013 Jun;79(12):3744-55. doi: 10.1128/AEM.03983-12. Epub 2013 Apr 12.

2.

Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge.

Petri RM, Schwaiger T, Penner GB, Beauchemin KA, Forster RJ, McKinnon JJ, McAllister TA.

PLoS One. 2013 Dec 31;8(12):e83424. doi: 10.1371/journal.pone.0083424. eCollection 2013.

3.

Epimural bacterial community structure in the rumen of Holstein cows with different responses to a long-term subacute ruminal acidosis diet challenge.

Wetzels SU, Mann E, Pourazad P, Qumar M, Pinior B, Metzler-Zebeli BU, Wagner M, Schmitz-Esser S, Zebeli Q.

J Dairy Sci. 2017 Mar;100(3):1829-1844. doi: 10.3168/jds.2016-11620. Epub 2016 Dec 29.

PMID:
28041738
4.

Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis.

Chen Y, Oba M, Guan LL.

Vet Microbiol. 2012 Oct 12;159(3-4):451-9. doi: 10.1016/j.vetmic.2012.04.032. Epub 2012 May 1.

PMID:
22622335
5.

Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a high-grain diet.

Chen Y, Penner GB, Li M, Oba M, Guan LL.

Appl Environ Microbiol. 2011 Aug 15;77(16):5770-81. doi: 10.1128/AEM.00375-11. Epub 2011 Jun 24.

7.

Rumen microbial population dynamics during adaptation to a high-grain diet.

Fernando SC, Purvis HT 2nd, Najar FZ, Sukharnikov LO, Krehbiel CR, Nagaraja TG, Roe BA, Desilva U.

Appl Environ Microbiol. 2010 Nov;76(22):7482-90. doi: 10.1128/AEM.00388-10. Epub 2010 Sep 17.

8.

Impact of subacute ruminal acidosis (SARA) adaptation and recovery on the density and diversity of bacteria in the rumen of dairy cows.

Hook SE, Steele MA, Northwood KS, Dijkstra J, France J, Wright AD, McBride BW.

FEMS Microbiol Ecol. 2011 Nov;78(2):275-84. doi: 10.1111/j.1574-6941.2011.01154.x. Epub 2011 Jul 14.

9.

Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis.

Khafipour E, Li S, Plaizier JC, Krause DO.

Appl Environ Microbiol. 2009 Nov;75(22):7115-24. doi: 10.1128/AEM.00739-09. Epub 2009 Sep 25.

10.

Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle.

Hernandez-Sanabria E, Goonewardene LA, Wang Z, Durunna ON, Moore SS, Guan LL.

Appl Environ Microbiol. 2012 Feb;78(4):1203-14. doi: 10.1128/AEM.05114-11. Epub 2011 Dec 9.

11.

Ruminal bacterial community shifts in grain-, sugar-, and histidine-challenged dairy heifers.

Golder HM, Denman SE, McSweeney C, Celi P, Lean IJ.

J Dairy Sci. 2014;97(8):5131-50. doi: 10.3168/jds.2014-8003. Epub 2014 Jun 2.

PMID:
24881800
12.

Physiological changes in rumen fermentation during acidosis induction and its control using a multivalent polyclonal antibody preparation in heifers.

Blanch M, Calsamiglia S, DiLorenzo N, DiCostanzo A, Muetzel S, Wallace RJ.

J Anim Sci. 2009 May;87(5):1722-30. doi: 10.2527/jas.2008-1184. Epub 2009 Feb 11.

13.

Effects of partial mixed rations and supplement amounts on milk production and composition, ruminal fermentation, bacterial communities, and ruminal acidosis.

Golder HM, Denman SE, McSweeney C, Wales WJ, Auldist MJ, Wright MM, Marett LC, Greenwood JS, Hannah MC, Celi P, Bramley E, Lean IJ.

J Dairy Sci. 2014 Sep;97(9):5763-85. doi: 10.3168/jds.2014-8049. Epub 2014 Jul 3.

PMID:
24997657
14.

Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing.

Mao SY, Zhang RY, Wang DS, Zhu WY.

Anaerobe. 2013 Dec;24:12-9. doi: 10.1016/j.anaerobe.2013.08.003. Epub 2013 Aug 29.

PMID:
23994204
15.

Bacterial diversity dynamics in rumen epithelium of wethers fed forage and mixed concentrate forage diets.

Sadet-Bourgeteau S, Martin C, Morgavi DP.

Vet Microbiol. 2010 Nov 20;146(1-2):98-104. doi: 10.1016/j.vetmic.2010.04.029. Epub 2010 May 10.

PMID:
20554126
16.

Pyrosequencing reveals shifts in the bacterial epimural community relative to dietary concentrate amount in goats.

Wetzels SU, Mann E, Metzler-Zebeli BU, Wagner M, Klevenhusen F, Zebeli Q, Schmitz-Esser S.

J Dairy Sci. 2015 Aug;98(8):5572-87. doi: 10.3168/jds.2014-9166. Epub 2015 Jun 4.

PMID:
26051320
17.

Molecular diversity of rumen bacterial communities from tannin-rich and fiber-rich forage fed domestic Sika deer (Cervus nippon) in China.

Li ZP, Liu HL, Li GY, Bao K, Wang KY, Xu C, Yang YF, Yang FH, Wright AD.

BMC Microbiol. 2013 Jul 8;13:151. doi: 10.1186/1471-2180-13-151.

18.

Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle.

Carberry CA, Kenny DA, Han S, McCabe MS, Waters SM.

Appl Environ Microbiol. 2012 Jul;78(14):4949-58. doi: 10.1128/AEM.07759-11. Epub 2012 May 4.

19.

Characterization of bovine ruminal epithelial bacterial communities using 16S rRNA sequencing, PCR-DGGE, and qRT-PCR analysis.

Li M, Zhou M, Adamowicz E, Basarab JA, Guan LL.

Vet Microbiol. 2012 Feb 24;155(1):72-80. doi: 10.1016/j.vetmic.2011.08.007. Epub 2011 Aug 10.

PMID:
21890283
20.

Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage.

Petri RM, Forster RJ, Yang W, McKinnon JJ, McAllister TA.

J Appl Microbiol. 2012 Jun;112(6):1152-62. doi: 10.1111/j.1365-2672.2012.05295.x. Epub 2012 Apr 24.

Supplemental Content

Support Center